Análisis y Reforzamiento Estructural Templo de Santo Domingo

1 metro Escala 1:200

Cuenca - Ecuador

Análisis y Reforzamiento Estructural del Templo de Santo Domingo

Análisis y Reforzamiento Estructural del Templo de Santo Domingo

Evaluación estructural del estado actual del Templo de Santo Domingo, perteneciente al Convento Santísimo Rosario de Cuenca y propuesta técnica inicial de reforzamiento estructural

© del texto: José Vázquez Calero, Felipe Andrade Ambrosi, Carlos García Avalos, Mateo Narváez Vásquez, Mishel Carrión Celi, 2024

© de esta edición: Universidad del Azuay. Casa Editora, 2024

© planos estudio 2008: Fausto Cardoso Martínez

ISBN: 978-9942-645-75-3

Diseño y diagramación: Fernando León Guerrero Portada: IERSE, Contraportada: Andersson Sanmartín, Departamento de Comunicación de la Universidad del Azuay Libro arbitrado por pares: Juan Carlos Mala Villacreses, Pablo Quinde Martínez.

Impresión: PrintLab / Universidad del Azuay en Cuenca del Ecuador

Se prohíbe la reproducción total o parcial de esta obra, por cualquier medio, sin la autorización expresa del titular de los derechos

CONSEJO EDITORIAL / UNIVERSIDAD DEL AZUAY

Francisco Salgado Arteaga

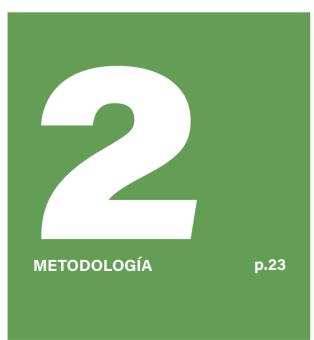
Rector

Genoveva Malo Toral Vicerrectora Académica

Raffaella Ansaloni Vicerrectora de Investigaciones

Toa Tripaldi Directora de la Casa Editora **ARQUIDIÓCESIS DE CUENCA**

Mons. Marcos Pérez Caicedo Arzobispo


ORDEN DE PREDICADORES - ECUADOR

Fray Armando Villalta Salazar O.P. Prior Provincia Sta. Catalina de Siena


Fray Jorge Jiménez Jiménez O.P. Superior Santísimo Rosario de Cuenca

ÍNDICE

DISEÑO 7.1 Cargas actuantes 7.2 Verificación por resistencia última de estado actual, propuesta de rehabilitación inicial 7.2.1 EJE A 7.2.2 EJE B 7.2.3 EJE C 7.2.4 EJE D 7.2.5 EJE E 7.2.6 EJE F 7.2.7 EJE G 7.2.8 EJE H 7.2.9 EJE I 7.2.10 EJE J 7.2.11 EJE 1 7.2.12 EJE 2 7.2.13 EJE 3 7.2.14 EJE 4

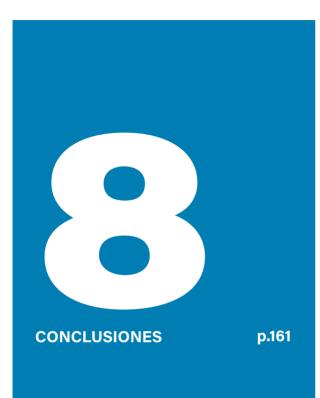
7.2.15 CÚPULAS

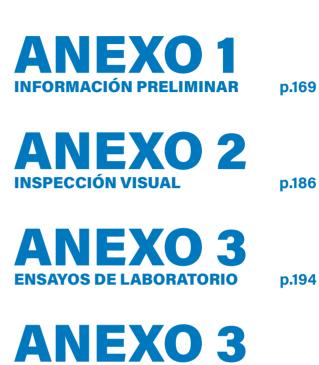
al reforzamiento.

7.3 Comparación del comportamiento de la estructura previo y posterior

p.51

56


66


76

96

114

123

p.197

ÍNDICE DE FIGURAS

Figura 1: Espadaña del Templo de Santo Domingo	17
Figura 2: Interior del Templo de Santo Domingo	17
Figura 3: Ubicación	21
Figura 4: Nivel de desempeño estructural	29
Figura 5: Mapa de peligro sísmico	35
Figura 6: Espectro de diseño	37
Figura 7: Modelo de la estructura	47
Figura 8: Modo de vibrar Rz	48
Figura 9: Modo de vibrar Y	48
Figura 10: Modo de vibrar X	49
Figura 11: Resultado por mapa de color del diagrama general de esfuerzo a tracción	53
Figura 12: Resultado por mapa de color del diagrama general de esfuerzo a compresión	54
Figura 13: Distribución espacial del eje A	56
Figura 14: Diagrama de esfuerzo a tracción eje A	57
Figura 15: Diagrama de esfuerzo a compresión eje A	58
Figura 16: Diagrama de esfuerzo a cortante eje A	59
Figura 17: Esquema de reforzamiento eje A	60
Figura 18: Fuerzas axiales en elementos de reforzamiento eje A	60
Figura 19: Distribución espacial del eje B	61
Figura 20: Diagrama de esfuerzo a tracción eje B	62
Figura 21: Diagrama de esfuerzo a compresión eje B	63
Figura 22: Diagrama de esfuerzo a cortante eje B	64
Figura 23: Esquema de reforzamiento eje B	65
Figura 24: Fuerzas axiales en elementos de reforzamiento eje B	65
Figura 25: Distribución espacial del eje C	66
Figura 26: Diagrama de esfuerzo a tracción eje C	67
Figura 27: Diagrama de esfuerzo a compresión eje C	68
Figura 28: Diagrama de esfuerzo a cortante eje C	69
Figura 29: Esquema de reforzamiento eje C	70
Figura 30: Fuerzas axiales en elementos de reforzamiento eje C	70
Figura 31: Distribución espacial del eje D	71
Figura 32: Diagrama de esfuerzo a tracción eje D	72
Figura 33: Diagrama de esfuerzo a compresión eje D	73
Figura 34: Diagrama de esfuerzo a cortante eje D	74
Figura 35: Esquema de reforzamiento eje D	75
Figura 36: Fuerzas axiales en elementos de reforzamiento eje D	75
Figura 37: Distribución espacial del eje E	76
Figura 38: Diagrama de esfuerzo a tracción eje E	77
Figura 39: Diagrama de esfuerzo a compresión eje E	78
Figura 40: Diagrama de esfuerzo a cortante eje E	79
Figura 41: Esquema de reforzamiento eje E	80
Figura 42: Fuerzas axiales en elementos de reforzamiento eje E	80
Figura 43: Distribución espacial del eje F	81
Figura 44: Diagrama de esfuerzo a tracción eje F	82
Figura 45: Diagrama de esfuerzo a compresión eje F	83
Figura 46: Diagrama de esfuerzo a cortante eje F	84
Figura 47: Esquema de reforzamiento eje F	85
Figura 48: Fuerzas axiales en elementos de reforzamiento eje F	85
Figura 49: Distribución espacial del eje G	86
Figura 50: Diagrama de esfuerzo a tracción eje G	87
Figura 51: Diagrama de esfuerzo a compresión eje G	88

Figura 52: Diagrama de esfuerzo a cortante eje G	89
Figura 53: Esquema de reforzamiento eje G	90
Figura 54: Fuerzas axiales en elementos de reforzamiento eje G	90
Figura 55: Distribución espacial del eje H	91
Figura 56: Diagrama de esfuerzo a tracción eje H	92
Figura 57: Diagrama de esfuerzo a compresión eje H	93
Figura 58: Diagrama de esfuerzo a cortante eje H	94
Figura 59: Esquema de reforzamiento eje H	95
Figura 60: Fuerzas axiales en elementos de reforzamiento eje H	95
Figura 61: Distribución espacial del eje I	96
Figura 62: Diagrama de esfuerzo a tracción eje I	97
Figura 63: Diagrama de esfuerzo a compresión eje I	98
Figura 64: Diagrama de esfuerzo a cortante eje l	99
Figura 65: Esquema de reforzamiento interno eje I	100
Figura 66: Fuerzas axiales en elementos de reforzamiento eje I	100
Figura 67: Esquema de reforzamiento externo eje l	101
Figura 68: Diagrama de esfuerzo a tracción eje I (sección compuesta)	102
Figura 69: Diagrama de esfuerzo a compresión eje I (sección compuesta)	103
Figura 70: Diagrama de esfuerzo a cortante eje I (sección compuesta)	104
Figura 71: Distribución espacial del eje J	105
Figura 72: Diagrama de esfuerzo a tracción eje J	106
Figura 73: Diagrama de esfuerzo a compresión eje J	107
Figura 74: Diagrama de esfuerzo a cortante eje J	108
Figura 75: Esquema de reforzamiento interno eje J	109
Figura 76: Fuerzas axiales en elementos de reforzamiento eje J	109
Figura 77: Esquema de reforzamiento externo eje J	110
Figura 78: Diagrama de esfuerzo a tracción eje J (sección compuesta)	111
Figura 79: Diagrama de esfuerzo a compresión eje J (sección compuesta)	112
Figura 80: Diagrama de esfuerzo a cortante eje J (sección compuesta)	113
Figura 81: Distribución espacial del eje 1	114
Figura 82: Diagrama de esfuerzo a tracción eje 1	115
Figura 83: Diagrama de esfuerzo a compresión eje 1	116
Figura 84: Diagrama de esfuerzo a cortante eje 1	117
Figura 85: Esquema de reforzamiento interno eje 1	118
Figura 86: Fuerzas axiales en elementos de reforzamiento eje 1	118
Figura 87: Esquema de reforzamiento externo eje 1	119
Figura 88: Diagrama de esfuerzo a tracción eje 1 (sección compuesta)	120
Figura 89: Diagrama de esfuerzo a compresión eje 1 (sección compuesta)	121
Figura 90: Diagrama de esfuerzo a cortante eje 1 (sección compuesta)	122
Figura 91: Distribución espacial del eje 2	123
Figura 92: Diagrama de esfuerzo a tracción eje 2	124
Figura 93: Diagrama de esfuerzo a compresión eje 2	125
Figura 94: Diagrama de esfuerzo a cortante eje 2	126
Figura 95: Esquema de reforzamiento interno eje 2	127
Figura 96: Fuerzas axiales en elementos de reforzamiento eje 2 Figura 97: Esquema de reforzamiento externo eje 2	127
	128 129
Figura 98: Diagrama de esfuerzo a tracción eje 2 (sección compuesta) Figura 99: Diagrama de esfuerzo a compresión eje 2 (sección compuesta)	130
Figura 100: Diagrama de esfuerzo a corripresion eje 2 (sección compuesta)	131
Figura 101: Distribución espacial del eje 3	132
Figura 101: Distribución espacial del eje 3 Figura 102: Diagrama de esfuerzo a tracción eje 3	133
Figura 103: Diagrama de esfuerzo a tracción eje 3 Figura 103: Diagrama de esfuerzo a compresión eje 3	134
Figura 104: Diagrama de esfuerzo a corriente eje 3	135
Figura 104: Diagrama de esideizo a cortante eje 3 Figura 105: Esquema de reforzamiento interno eje 3	136
Figura 106: Fuerzas axiales en elementos de reforzamiento eje 3	136
Figura 107: Esquema de reforzamiento externo eje 3	137
i igaia iori Esquema de reiorzamiento externo eje s	137

Figura 108: Diagrama de esfuerzo a tracción eje 3 (sección compuesta)	138
Figura 109: Diagrama de esfuerzo a compresión eje 3 (sección compuesta)	139
Figura 110: Diagrama de esfuerzo a cortante eje 3 (sección compuesta)	140
Figura 111: Distribución espacial del eje 4	141
Figura 112: Diagrama de esfuerzo a tracción eje 4	142
Figura 113: Diagrama de esfuerzo a compresión eje 4	143
Figura 114: Diagrama de esfuerzo a cortante eje 4	144
Figura 115: Esquema de reforzamiento interno eje 4	145
Figura 116: Fuerzas axiales en elementos de reforzamiento eje 4	145
Figura 117: Esquema de reforzamiento externo eje 4	146
Figura 118: Diagrama de esfuerzo a tracción eje 4 (sección compuesta)	147
Figura 119: Diagrama de esfuerzo a compresión eje 4 (sección compuesta)	148
Figura 120: Diagrama de esfuerzo a cortante eje 4 (sección compuesta)	149
Figura 121: Distribución espacial de las cúpulas	150
Figura 122: Diagrama de esfuerzo a tracción de las cúpulas	151
Figura 123: Diagrama de esfuerzo a compresión de las cúpulas	152
Figura 124: Diagrama de esfuerzo a cortante de las cúpulas	153
Figura 125: Esquema de reforzamiento externo de las cúpulas	154
Figura 126: Diagrama de esfuerzo a tracción de las cúpulas (sección compuesta)	155
Figura 127: Diagrama de esfuerzo a compresión de las cúpulas (sección compuesta)	156
Figura 128: Diagrama de esfuerzo a cortante de las cúpulas (sección compuesta)	157

ÍNDICE DE TABLAS

Tabla 1: Peso propio en elementos estructurales	33
Tabla 2: Carga permanente	33
Tabla 3: Carga permanente en cubierta	33
Tabla 4: Conjunto de cargas	34
Tabla 5: Factor de amplificación del suelo	35
Tabla 6: Factor de amplificación de las ordenadas	36
Tabla 7: Factor de comportamiento no lineal de los suelos	36
Tabla 8: Peligro sísmico	36
Tabla 9: Coeficiente sísmico	38
Tabla 10: Cortante basal	38
Tabla 11: Combinación de cargas de resistencia	39
Tabla 12: Combinación de cargas de servicio	39
Tabla 13: Especificaciones de materiales existentes en el templo	43
Tabla 14: Especificaciones de materiales para la rehabilitación estructural	43
Tabla 15: Análisis modal	4
Tabla 16: Características de los materiales y geometría del eje A	56
Tabla 17: Esfuerzos admisibles para tracción axial del eje A	5
Tabla 18: Esfuerzos admisibles para compresión axial del eje A	58
Tabla 19: Esfuerzos admisibles para cortante del eje A	59
Tabla 20: Características de los materiales y geometría del eje B	6
Tabla 21: Esfuerzos admisibles para tracción axial del eje B	62
Tabla 22: Esfuerzos admisibles para compresión axial del eje B	63
Tabla 23: Esfuerzos admisibles para cortante del eje B	64
Tabla 24: Características de los materiales y geometría del eje C	66
Tabla 25: Esfuerzos admisibles para tracción axial del eje C	6
Tabla 26: Esfuerzos admisibles para compresión axial del eje C	68
Tabla 27: Esfuerzos admisibles para cortante del eje C	69
Tabla 28: Características de los materiales y geometría del eje D	7
Tabla 29: Esfuerzos admisibles para tracción axial del eje D	72
Tabla 30: Esfuerzos admisibles para compresión axial del eje D	73
Tabla 31: Esfuerzos admisibles para cortante del eje	74
Tabla 32: Características de los materiales y geometría del eje E	76
Tabla 33: Esfuerzos admisibles para tracción axial del eje E	7
Tabla 34: Esfuerzos admisibles para compresión axial del eje E	78
Tabla 35: Esfuerzos admisibles para cortante del eje E	79
Tabla 36: Características de los materiales y geometría del eje F	8
Tabla 37: Esfuerzos admisibles para tracción axial del eje F	82
Tabla 38: Esfuerzos admisibles para compresión axial del eje F	83
Tabla 39: Esfuerzos admisibles para cortante del eje F	84
Tabla 40: Características de los materiales y geometría del eje G	86
Tabla 41: Esfuerzos admisibles para tracción axial del eje G	8
Tabla 42: Esfuerzos admisibles para compresión axial del eje G	88
Tabla 43: Esfuerzos admisibles para cortante del eje G	89
Tabla 44: Características de los materiales y geometría del eje H	9
Tabla 45: Esfuerzos admisibles para tracción axial del eje H	92
Tabla 46: Esfuerzos admisibles para compresión axial del eje H	93
Tabla 47: Esfuerzos admisibles para cortante del eje H	94
Tabla 48: Características de los materiales y geometría del eje l	96
Tabla 49: Esfuerzos admisibles para tracción axial del eje I	97
Tabla 50: Esfuerzos admisibles para compresión axial del eje I	98
Tabla 51: Esfuerzos admisibles para cortante del eje l	99

		Características de los materiales y geometría de la sección compuesta propuesta para el eje l	101
Tabla	53:	: Esfuerzos admisibles para tracción axial del eje I (sección compuesta)	102
Tabla	54:	Esfuerzos admisibles para compresión axial del eje I (sección compuesta)	103
Tabla	55:	Esfuerzos admisibles para cortante del eje I (sección compuesta)	104
Tabla	56:	: Características de los materiales y geometría del eje J	105
Tabla	57:	Esfuerzos admisibles para tracción axial del eje J	106
Tabla	58:	Esfuerzos admisibles para compresión axial del eje J	107
Tabla	59:	Esfuerzos admisibles para cortante del eje J	108
		: Características de los materiales y geometría de la sección compuesta propuesta para el eje J	110
		Esfuerzos admisibles para tracción axial del eje J (sección compuesta)	111
		Esfuerzos admisibles para compresión axial del eje J (sección compuesta)	112
		Esfuerzos admisibles para cortante del eje J (sección compuesta)	113
		: Características de los materiales y geometría del eje 1	114
		Esfuerzos admisibles para tracción axial del eje 1	115
		Esfuerzos admisibles para compresión axial del eje 1	116
		Esfuerzos admisibles para cortante del eje 1	117
		: Características de los materiales y geometría de la sección compuesta propuesta para el eje 1	119
		Esfuerzos admisibles para tracción axial del eje 1 (sección compuesta)	120
		Esfuerzos admisibles para compresión axial del eje 1 (sección compuesta)	121
		Esfuerzos admisibles para cortante del eje 1 (sección compuesta)	122
		Características de los materiales y geometría del eje 2	123
		Esfuerzos admisibles para tracción axial del eje 2	124
		Esfuerzos admisibles para compresión axial del eje 2	125
		Esfuerzos admisibles para cortante del eje 2	126
		Características de los materiales y geometría de la sección compuesta propuesta para el eje 2	128
		Esfuerzos admisibles para tracción axial del eje 2 (sección compuesta)	129
		Esfuerzos admisibles para compresión axial del eje 2 (sección compuesta)	130
		Esfuerzos admisibles para cortante del eje 2 (sección compuesta)	131
		: Características de los materiales y geometría del eje 3	132
		Esfuerzos admisibles para tracción axial del eje 3	133
		Esfuerzos admisibles para compresión axial del eje 3	134
		Esfuerzos admisibles para cortante del eje 3	135
		: Características de los materiales y geometría de la sección compuesta propuesta para el eje 3	137
		Esfuerzos admisibles para tracción axial del eje 3 (sección compuesta)	138
		Esfuerzos admisibles para compresión axial del eje 3 (sección compuesta)	139
		Esfuerzos admisibles para cortante del eje 3 (sección compuesta)	140
		: Características de los materiales y geometría del eje 4	141
		Esfuerzos admisibles para tracción axial del eje 4	142
		Esfuerzos admisibles para compresión axial del eje 4	143
		Esfuerzos admisibles para cortante del eje 4	144
		: Características de los materiales y geometría de la sección compuesta propuesta para el eje 4	146
		Esfuerzos admisibles para tracción axial del eje 4 (sección compuesta)	147
		Esfuerzos admisibles para compresión axial del eje 4 (sección compuesta)	148
		Esfuerzos admisibles para cortante del eje 4 (sección compuesta)	149
		: Características de los materiales y geometría de las cúpulas	150
		Esfuerzos admisibles para tracción axial de las cúpulas	151
		Esfuerzos admisibles para compresión axial de las cúpulas	152
		Esfuerzos admisibles para cortante de las cúpulas	153
		Características de los materiales y geometría de la sección compuesta propuesta para las cúpulas	154
		: Esfuerzos admisibles para tracción axial de las cúpulas (sección compuesta)	155
		La Esfuerzos admisibles para compresión axial de las cúpulas (sección compuesta)	156
		Esfuerzos admisibles para cortante de las cúpulas (sección compuesta)	157
		: Comparación del estado actual vs posterior al reforzamiento del eje l	158
		5: Comparación del estado actual vs posterior al reforzamiento de las cupulas	159

INTRODUCCIÓN

1.1 Antecedentes

La Basílica de Nuestra Señora del Rosario, más conocida como la Iglesia de Santo Domingo; es la segunda más grande de Cuenca. Su construcción inició a principios del siglo XX. Está ubicada en la parroquia Gil Ramírez Dávalos de la ciudad de Cuenca en la provincia del Azuay – Ecuador.

Santo Domingo es uno de los bienes patrimoniales más importantes de esta ciudad: guarda murales, cuadros y esculturas de gran valor. Algunas de estas obras de arte datan del siglo XVI, así como otras reliquias de carácter religioso.

La edificación, de carácter ecléctico, consta de dos torres en su espadaña de 40 m. de altura, con un estilo neoclásico. Su construcción se constituye de ladrillo artesanal, tumbados de latón, techos de teja artesanal y pisos de madera, en su mayoría y posee algunas columnas marmoleadas. Estas características constructivas la convierten en una edificación patrimonial, única.

Figura 1: Espadaña del Templo de Santo Domingo Fuente: Andersson Sanmartín, Departamento de Comunicación de la Universidad del Azuay

Figura 2: Interior del Templo de Santo Domingo Fuente: Andersson Sanmartín, Departamento de Comunicación de la Universidad del Azuay

El 18 de marzo de 2023 se produjo un terremoto de profundidad intermedia, movimiento sísmico ocurrido a las 12:12 hora local, que afectó la zona sur de Ecuador, localizado frente a la costa de Balao en la provincia de El Oro, cuyo epicentro tuvo lugar en las coordenadas 2°51′04″ S – 79°48′ 00″ O, 80 Km al sur de la ciudad de Guayaquil, con una profundidad de 68 km, cuya magnitud fue de 6,8 Mw¹ (magnitud de momento), causando daños importantes y severos en las provincias ecuatorianas de Azuay, El Oro y Guayas y en la parte norte del Perú, dejando un saldo de 18 muertos y 495 personas heridas, además de cuantiosos daños materiales en casas y edificios de las zonas afectadas. Tal es el caso del colapso de 96 casas y 318 edificaciones dañadas, entre casas, escuelas, instalaciones de salud, así como la afectación de la estructura de un puente.

El sismo tuvo una magnitud de 6,8 Mw y una escala de intensidad MMI² (escala de intensidad de Mercalli modificada) máxima de VII (muy fuerte). Según el servicio geológico de Estados Unidos, se sintió en 14 de las 24 provincias del Ecuador.

En la ciudad de Cuenca, en particular, murieron dos personas y otras dos resultaron heridas. Dos casas fueron destruidas y muchas otras edificaciones resultaron afectadas con daños entre leves y severos, tal es el caso de la iglesia de Santo Domingo, perteneciente al Convento del Santísimo Rosario.

Producto de este fenómeno natural, la iglesia de Santo Domingo presentó afecciones en su estructura soportante, desplomes, fisuras en muros, arcos y campanarios mayores a 3 mm, considerados daños de inmediata intervención. Al tratarse de una obra patrimonial el costo es invalorable y su preservación debería ser de carácter urgente, el buen uso del convento y el templo religioso combina lo arquitectónico y urbano con el resto del centro histórico de la ciudad de Cuenca.

La Dirección de Áreas Históricas del Gobierno Autónomo Descentralizado del Cantón Cuenca, emite un informe el 18 de abril de 2023, en el que da cuenta de afectaciones que van desde graves a muy graves en los elementos estructurales del templo.

De acuerdo al análisis estructural, toda edificación tiene un sistema soportante que se identifica como estructura y otros sistemas no estructurales, tales como divisiones, instalaciones y acabados. En el presente caso de estudio de la iglesia de Santo Domingo, uno de los sistemas soportantes son los muros de albañilería, realizados en mampostería de ladrillo artesanal de espesores diversos, principalmente armados con morteros de cal, que forman una bóveda auto soportada con arcos que trabajan exclusivamente a compresión; que no es más que el comportamiento de los materiales y elementos de construcción para resistir cargas aplicadas que procuran reducir su volumen, agrietarle y romperle. En este tipo de edificaciones, desde la antigüedad se utilizaron los arcos para resistir este tipo de acciones; sin embargo, se conoce que el sistema no responde de buena forma ante acciones sísmicas y dinámicas; debido a que los muros de albañilería tienen baja ductilidad y resultan vulnerables a este tipo de fuerzas.

Ante esta realidad, la administración del convento de Santo Domingo, en la persona de Fray Gonzalo Suárez Carvajal, solicita al rector de la Universidad del Azuay, Prof. Francisco Salgado A., la inspección, evaluación y propuesta inicial de reforzamiento del templo afectado después del sismo del 18 de marzo de 2023. Es así que se

- ¹MW: Escala sismológica de magnitud de momento. Escala logarítmica usada para medir y comparar terremotos. Está basada en la energía total que se libera en un sismo. (Thomas Hanks y Hiroo Kanamori 1979)
- ² MMI: Mide la intensidad del movimiento del suelo, desde la perspectiva de las personas y la respuesta de las estructuras en una escala que va de 1 (no sentido) a 10 (daños muy fuertes) o en algunos casos excepcionales 12 (destrucción total).

suscribe un convenio de cooperación entre las dos entidades, para sumar esfuerzos y obtener una primera herramienta de gestión con un solo objetivo: recuperar y preservar la iglesia de Santo Domingo y su convento del Santísimo Rosario. Este trabajo se le encarga al departamento de Consultoría Técnica de la Universidad del Azuay, UDA Civil, para que realice una primera evaluación, análisis y propuesta de reforzamiento de la edificación de la iglesia de Santo Domingo.

La información de base con la que se genera la investigación técnica fue entregada por las autoridades del convento, información relacionada con un estudio arquitectónico realizado por el consultor en áreas patrimoniales Arq. Fausto Cardoso Martínez en 2008³.

En la inspección visual realizada por el equipo técnico de la Universidad del Azuay, se pudo determinar el desplome de algunos elementos estructurales ante lo cual se establece necesario realizar ensayos no destructivos o mínimamente invasivos, como toma de muestras y extracción de núcleos de muros portantes, que posteriormente fueron analizados en el laboratorio de materiales de construcción de la Escuela de Ingeniería Civil de la UDA.

De igual manera, se pudo revisar otra información proporcionada por los directivos del convento, obtenida de estudios realizados anteriormente, por la municipalidad de Cuenca, de donde se desprende que es necesario completar estudios de Geotecnia de detalle, que nos permita identificar la calidad de suelo donde se funda la construcción del templo de Santo Domingo. Este estudio cobra mayor importancia, cuando se ve que es necesario conocer el comportamiento de dicho suelo ante la presencia de ondas sísmicas, registrar los movimientos y vibraciones mecánicas del subsuelo, que luego son transmitidas a la estructura de la edificación. A este respecto, uno de los actores nuevos que han hecho presencia en el último tiempo, es la construcción y puesta en marcha del tranvía de la ciudad de Cuenca que circula por la calle Gran Colombia, aledaña a la iglesia de Santo Domingo. Para este propósito es necesario aplicar la instrumentación ambiental respectiva, con el objeto de contar con la información que permita considerarlo dentro de las posibles causas externas que afectarían la estabilidad estructural de la edificación.

Estas y otras acciones de medida y control deberán ser ejecutadas previo a la ejecución de este proyecto, con el propósito de contar con la mayor información posible que permita tener un estudio más profundo del estado estructural del templo y la posible mitigación de aquellas causas que eventualmente lo afecten.

El análisis estructural de la edificación se realizó mediante el uso de un software especializado, con licencia autorizada de la escuela de Ingeniería Civil de la Universidad del Azuay. A pesar de las limitaciones de la línea base, los resultados obtenidos en el modelo computacional fueron acordes al comportamiento de la edificación en la realidad; presentando concentraciones de esfuerzos en puntos críticos de arcos, columnas de mampostería y torres de los campanarios.

En virtud de lo expuesto, este proyecto preliminar de reforzamiento de la Iglesia de Santo Domingo, perteneciente al convento del Santísimo Rosario de la ciudad de Cuenca, es una primera herramienta de gestión del riesgo y considerando que se convive con la amenaza sísmica permanente, lo que se puede plantear es una propuesta técnica para disminuir la vulnerabilidad de la edificación.

³ Fausto Cardoso Martínez, Director de la Consultoría para los estudios de restauración del Complejo Arquitectónico de Santo Domingo de Cuenca, año 2008.

El centro histórico de la ciudad de Cuenca fue declarado patrimonio cultural de la humanidad el 1 de diciembre 1999, que más que un reconocimiento cultural, representa un compromiso para los ciudadanos, con el buen uso y conservación de sus obras urbanas icónicas-patrimoniales ubicadas en un entorno único. De allí la importancia de motivar la intervención de entidades locales, nacionales e internacionales, así como de la universidad en la búsqueda de su conservación.

Es importante destacar que, para la conservación de la edificación del templo de Santo Domingo, emblema patrimonial de la ciudad de Cuenca, se deben desarrollar varios estudios complementarios, con el fin de obtener un plan de rehabilitación integral que incluya no solamente la parte estructural, sino también su arquitectura patrimonial y la herencia histórica, entre otros valores.

Los lineamientos indicados en el presente documento, corresponden únicamente al desarrollo del estudio del área estructural.

De la misma manera, y con el fin de reducir la incertidumbre del análisis estructural, se deberán realizar ensayos de mecánica de suelos en cimentación, estudios de peligro sísmico de la zona de implantación, ensayos de vibración ambiental y ensayos destructivos en muretes que conforman la estructura del templo.

El informe presentado es de carácter inicial y debe ser complementado, una vez que se cuenten con los recursos económicos necesarios para realizar los estudios mencionados.

1.2 Alcance

Realizar el análisis, evaluación y reforzamiento estructural del proyecto, en función de los parámetros establecidos por la norma vigente y bibliografía existente para el tipo de estructura en estudio.

1.3 Objetivo

Conservar el bien patrimonial, y como tema central preservar el área estructural, para garantizar la permanencia del monumento histórico y su conjunto, así como continuar con su uso de carácter social y religioso.

1.4 Ubicación

La estructura se encuentra ubicada en el centro histórico de la ciudad de Cuenca-Provincia del Azuay al sur del Ecuador, en la calle Gran Colombia, entre General Torres y Padre Aguirre.

CALLE GENERAL TORRES CALLE PADRE AGUIRRE CALLE GRAN COLOMBIA IGLESIA SANTO DOMINGO

Figura 3: Ubicación Fuente: Google Earth

METODOLOGÍA

Para realizar el estudio de la edificación, se ha divido el proceso en tres etapas:

- Evaluación,
- Análisis, y
- Reforzamiento estructural.

En la primera etapa (evaluación) se procede a levantar la información base. Este fundamento permite definir las cargas actuantes, el estado de los muros y tipos de materiales, se evalúa los elementos estructurales para las consideraciones iniciales del modelo, utilizando el levantamiento arquitectónico proporcionado por las autoridades del templo y otros documentos conexos.

En la segunda etapa, mediante el análisis computacional de un modelo digital se determina el cumplimiento de la estructura frente a estados de resistencia y servicio, determinando los esfuerzos actuantes, y mediante el análisis estructural se establecen las áreas donde se supera la capacidad de resistencia de los elementos.

Finalmente, en la tercera etapa (reforzamiento estructural) se establecen las secciones, diámetros, ubicaciones y las estructuras de refuerzo requeridas, y se verifica la comprobación del modelo reforzado.

FILOSOFÍA DE DISEÑO

De acuerdo a las recomendaciones de la NEC-15 la estructura debe diseñarse garantizando el nivel de "Seguridad de Vida". Teniendo el sismo un periodo de retorno de 1000 años.

Se debe considerar que el punto de desempeño correspondiente a "Seguridad de Vida" exige reparaciones y rehabilitación estructural luego un evento sísmico.

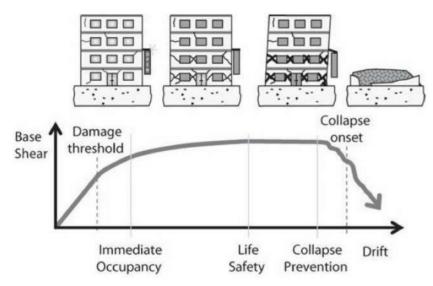


Figura 4: Nivel de desempeño estructural Fuente: Seismic Design of Reinforced Concrete Buildings, Jack Moehle

SOLICITACIONES

4.1 Normas utilizadas

- Norma Ecuatoriana de la Construcción (NEC-SE,2015)
- Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary
- Minimum Design Loads for Buildings and Other Structures (ASCE 7-22)
- Specification for Structural Steel Buildings (AISC-360-16)
- Seismic Provision for structural steel buildings (AISC 341-16)
- Prestandard and Commentary for the seismic rehabilitación of Buildings (FEMA-356)

4.2 Cargas

4.2.1 Peso propio de la estructura

El peso por volumen de materiales utilizados para conformar la estructura son los especificados por la norma NEC-SE-CG como se indica a continuación.

Peso propio de la estructura

Descripción	Peso unitario [kg/m3]
Hormigón armado	2400
Mampostería de ladrillo	1800
Acero estructural	7850
Agua	1000

Tabla 1: Peso propio en elementos estructurales

Fuente: NEC- SE-CG

Elaboración: Departamento de Consultoría Técnica - UDA Civil

4.2.2 Carga muerta adicional

Esta contempla las paredes, recubrimientos, instalaciones, acabados, entre otros.

Carga permanente en entrepiso

Carga permanente en entrepiso		
Descripción	CM [Kg/m²]	
Cielo raso	50	
Instalaciones	30	
Entrepiso de madera	20	
Otros	200	
Total, carga muerta	300	

Tabla 2: Carga permanente

Fuente: NEC- SE-CG

Elaboración: Departamento de Consultoría Técnica - UDA Civil

Carga permanente en cubierta

Descripción	CM [Kg/m²]
Teja de barro cocido sin mortero	50
Instalaciones	20
Otros	80
Total, carga muerta	150

Tabla 3: Carga permanente en cubierta

Fuente: NEC- SE-CG

Elaboración: Departamento de Consultoría Técnica - UDA Civil

4.2.3 Conjunto de cargas

El conjunto de carga muerta, viva se expresan según la ocupación como se indica en la Tabla 4.

Conjunto de cargas

Nivel	Uso	CM [kg/m²]	CV [kg/m²]
N + 4.79	Entrepiso	300	500
N + 7.85	Cubierta inaccesible	150	100
N + 14.65	Cubierta inaccesible	150	100

Tabla 4: Conjunto de cargas

Fuente: NEC- SE-CG

Elaboración: Departamento de Consultoría Técnica - UDA Civil

4.2.4 Demanda sísmica

De manera consecuente se debe determinar la acción sísmica que actuaría sobre las diferentes estructuras, para lo cual se ha realizado un análisis de carga estática equivalente. Como premisa, se requiere definir el espectro de diseño, es decir la consideración de como actuará el sismo en el lugar donde está construida la edificación, en función del tipo de suelo del lugar, la geometría de la estructura, la zona sísmica y los parámetros de sitio, entre otros. Finalmente, se debe modificar la fuerza sísmica en función de la importancia de la estructura, el tipo de construcción y la materialidad empleada.

4.2.4.1 Peligro sísmico

Para definir la demanda sísmica de la estructura se debe considerar la ubicación geográfica del proyecto, como se recomienda en el mapa de riesgo sísmico de la norma NEC-15, indicado a continuación.

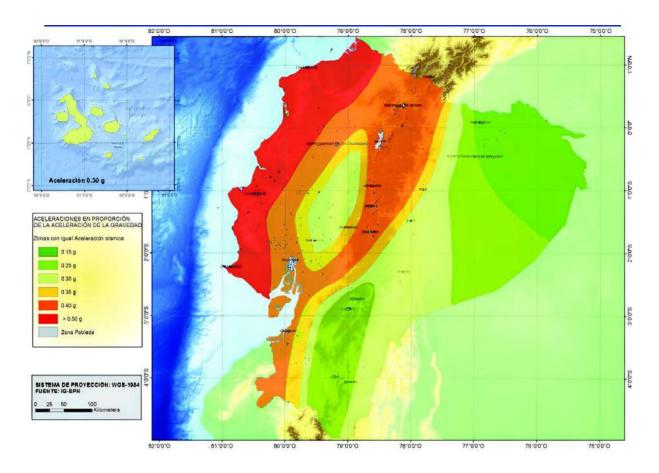


Figura 5: Mapa de peligro sísmico Fuente: NEC-15

De la misma manera, se deben considerar los factores de amplificación en función del suelo de emplazamiento según lo recomienda la norma NEC.

Factor de amplificación de suelo (Fa) - NEC SE-DS Tabla 3

I	II	III	IV	V	VI
0.15	0.25	0.3	0.35	0.4	0.55
0.9	0.9	0.9	0.9	0.9	0.9
1	1	1	1	1	1
1.4	1.3	1.25	1.23	1.2	1.18
1.6	1.4	1.3	1.25	1.2	1.12
1.8	1.4	1.25	1.1	1	0.85
	0.9 1 1.4 1.6	0.9 0.9 1 1 1.4 1.3 1.6 1.4	0.15 0.25 0.3 0.9 0.9 0.9 1 1 1 1.4 1.3 1.25 1.6 1.4 1.3	0.15 0.25 0.3 0.35 0.9 0.9 0.9 0.9 1 1 1 1 1.4 1.3 1.25 1.23 1.6 1.4 1.3 1.25	0.15 0.25 0.3 0.35 0.4 0.9 0.9 0.9 0.9 0.9 1 1 1 1 1 1.4 1.3 1.25 1.23 1.2 1.6 1.4 1.3 1.25 1.25

Tabla 5: Factor de amplificación del suelo

Fuente: NEC-15

Factor de amplificación de las ordenadas (Fd) - NEC SE-DS Tabla 4

Suelo	l 0,15	 	III 0,3	IV 0.35	V 0.4	VI 0.55
	0110	0.20		0.00	01.1	
Α	0.9	0.9	0.9	0.9	0.9	0.9
В	1	1	1	1	1	1
С	1.36	1.28	1.19	1.15	1.11	1.06
D	1.62	1.45	1.36	1.28	1.19	1.11
E	2.1	1.75	1.7	1.65	1.6	1.5

Tabla 6: Factor de amplificación de las ordenadas

Fuente: NEC-15

Factor de comportamiento no lineal de los suelos (Fs) - NEC SE-DS Tabla 5

Suelo	l 0.15	II 0.25	III 0.3	IV 0.35	V 0.4	VI 0.55
A	0.75	0.75	0.75	0.75	0.75	0.75
В	0.75	0.75	0.75	0.75	0.75	0.75
С	0.85	0.94	1.02	1.06	1.11	1.23
D	1.02	1.06	1.11	1.19	1.28	1.4
E	1.5	1.6	1.7	1.8	1.9	2

Tabla 7: Factor de comportamiento no lineal de los suelos

Fuente: NEC-15

Con estos parámetros se definen las características de la demanda sísmica representada por el espectro que se a continuación se detalla.

Factores de sitio

Z	0.25	[-]	Factor de zona (PGA)
Suelo	С	[-]	
Locación	Sierra	[-]	
Fa	1.30	[-]	Coeficiente de amplificación en la zona de periodo corto
Fd	1.28	[-]	Coeficiente de amplificación de las ordenadas del espectro en roca
Fs	0.94	[-]	Coeficiente de comportamiento no lineal de suelos
r	1	[-]	Factor dependiente de la ubicación geográfica del proyecto
η	2.48	[-]	Razón entre aceleración espectral y el PGA
То	0.09	[s]	Periodo límite de ramal ascendente del espectro
Tc	0.509	[s]	Periodo de esquina

Tabla 8: Peligro sísmico

Elaboración: Departamento de Consultoría Técnica - UDA Civil

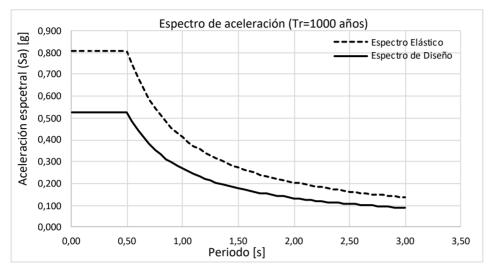


Figura 6: Espectro de diseño Elaboración: Departamento de Consultoría Técnica - UDA Civil

4.2.4.2 Sistema resistente a cargas

Se considera un sistema formado por mampostería no reforzada con un factor de reducción de respuesta R igual a 2, según lo recomienda Patricio Placencia Andrade⁴ en el **"Estudio de vulnerabilidad estructural de las torres de los campanarios de la iglesia San Francisco de Quito, ubicada en el centro histórico."** (Núñez & Narváez, 2019)

Por otro lado, el sistema resistente a cargas verticales lo conforman los muros de mampostería portante porticados, con entrepisos armados con vigas de madera.

4.2.4.3 Factor de importancia

La edificación se define como "Estructuras de ocupación especial" según lo indica la norma NEC-15, correspondiente a un factor de importancia I=1.3

4.2.4.4 Cortante basal

Finalmente se obtiene el cortante basal estático, siguiendo los lineamientos de la norma NEC-15. Se puede decir entonces que es la intensidad fuerza que impactaría a la estructura de la iglesia, generada por un sismo esperado.

$$v = \frac{I^*Sa(Ta)}{R^*\varphi P^*\varphi E} * W$$

⁴ Patricio Placencia
Andrade: Miembro del
equipo encargado del
desarrollo de la NEC
15, de los apartados
de mampostería y
rehabilitación, en
representación de la
Escuela Politécnica
Nacional. Consultor
de múltiples proyectos
de reforzamiento
y rehabilitación
en edificios de
mampostería estructural.

Sistema estructural y coeficiente sísmico

			•
Mampos	Mampostería no reforzada y no confinada		Sistema resistente a cargas laterales
R	2		Factor de reducción espectral
	1.3	[-]	Factor de importancia
Øр	1	[-]	Coeficiente de regularidad en planta
Øe	1	[-]	Coeficiente de regularidad en elevación
% CV	10	[%]	Porcentaje de carga viva que aporta como peso sísmico
Cd	1.5	[-]	Coeficiente de amplificación de deformaciones = 0.75xR
PSA	0.81	[g]	Aceleración espectral
Cs	0.52	[%]	Coeficiente sísmico

Tabla 9: Coeficiente sísmico

Elaboración: Departamento de Consultoría Técnica - UDA Civil

Cortante Basal

F	stático (EL	E)	
	Statico (LL	-1 /	
Cs	0.52	[-]	Coeficiente sísmico
W	13512	[Ton]	Masa sísmica
VBst	7078.93	[Ton]	Cortante basal estático

Tabla 10: Cortante basal

Elaboración: Departamento de Consultoría Técnica - UDA Civil

4.3 Combinaciones de carga

El estudio estructural conlleva a consideraciones de cargas actuantes y factores de mayoración. En este contexto, los elementos estructurales fueron analizados, evaluados y diseñados verificando las condiciones de resistencia y servicio especificadas por la norma. Se utilizó un diseño a resistencia última, por cuanto se mayora las cargas de servicio por factores de seguridad según la combinación de carga como se indican en las siguientes tablas.

Combinación de cargas de resistencia

Combinación	CM	CV	Lr - S	EQ x	EQ y
1	1.1	0.25	-	1	-
2	1.1	0.25	-	-	1
3	0.9	0.255	-	1	-
4	0.9	0.255	-	-	1

Tabla 11: Combinación de cargas de resistencia Elaboración: Departamento de Consultoría Técnica - UDA Civil

Combinación de cargas de servicio

Combinación	CM	CV	Lr - S	EQ x	EQ y
1	1	-	-	-	-
2	1	1	-	-	-

Tabla 12: Combinación de cargas de servicio Elaboración: Departamento de Consultoría Técnica - UDA Civil

ESPECIFICACIONES DE MATERIALES

Para el análisis estructural, se utilizan los siguientes parámetros:

Especificaciones técnicas de materiales existentes en el templo

<u> </u>	
Material	Descripción
Mampostería de ladrillo	f'm= 70 kg/cm², Em=750*f'm

Tabla 13: Especificaciones de materiales existentes en el templo Elaboración: Departamento de Consultoría Técnica - UDA Civil

Especificaciones técnicas de materiales para rehabilitación inicial

•	•		
Material	Descripción		
Hormigón en superestructura	f'c= 300 kg/cm², Ec=15100*(f'c)^2		
Acero de refuerzo	Fy= 4200 kg/cm² / Grado 60 / Corrugado		
Acero en placas de anclaje	Fy= 3500 kg/cm² / Grado 50 Ksi / A572		
Pernos de anclaje	A 325 / 60 Ksi		

Tabla 14: Especificaciones de materiales para la rehabilitación estructural Elaboración: Departamento de Consultoría Técnica - UDA Civil

ANÁLISIS ESTRUCTURAL

Para el análisis estructural del proyecto se optó por la realización de un modelo tridimensional idealizado a través del método de elementos finitos. Al modelar la estructura de esta forma, se tiene la ventaja de obtener de manera precisa la interacción de los diferentes elementos estructurales.

Para el análisis se han considerado a las secciones de mampostería con su inercia agrietada equivalente al 0.9 de la inercia del elemento, debido a que estos elementos no se agotarán a flexión.

De igual manera, para el modelo dinámico de la estructura no se considera la rigidez aportada por aquellos elementos que no son parte del sistema resistente a cargas laterales, tal como la losa y las escaleras. Estos elementos serán evaluados y diseñados solo para cargas gravitatorias.

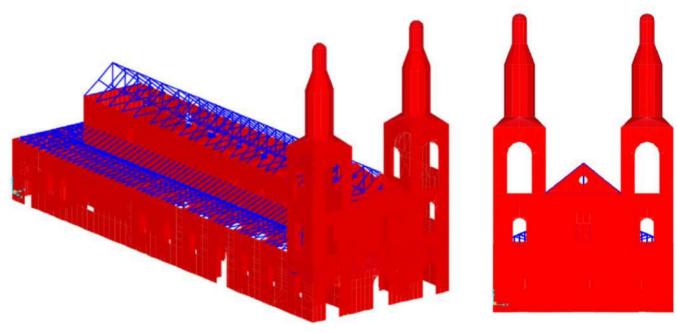


Figura 7: Modelo de la estructura Elaboración: Departamento de Consultoría Técnica - UDA Civil

6.1 Análisis modal

Como premisa del análisis modal se debe realizar luego de realizar el análisis del modelo, se obtuvieron los siguientes resultados:

Modo	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
	seg												
Rz	0,27	0,00	0,13	0,00	0,19	0,14	0,00	0,27	0,00	0,16	0,29	0,05	0,16
Υ	0,15	0,00	0,23	0,00	0,19	0,55	0,00	0,01	0,00	0,02	0,32	0,05	0,30
X	0,15	0,21	0,00	0,00	0,41	0,55	0,00	0,00	0,00	0,00	0,32	0,06	0,30

Tabla 15: Análisis modal

Elaboración: Departamento de Consultoría Técnica - UDA Civil

Se observa el modo fundamental traslacional. De la misma manera, se utilizan modos suficientes para alcanzar más del 90% de la masa movilizada en el análisis según lo requiere la norma.

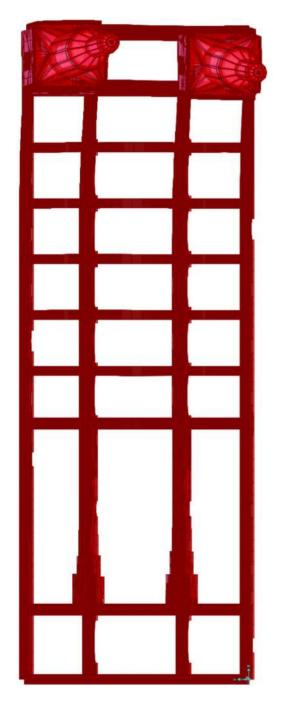


Figura 8: Modo de vibrar Rz Elaboración: Departamento de Consultoría Técnica - UDA Civil

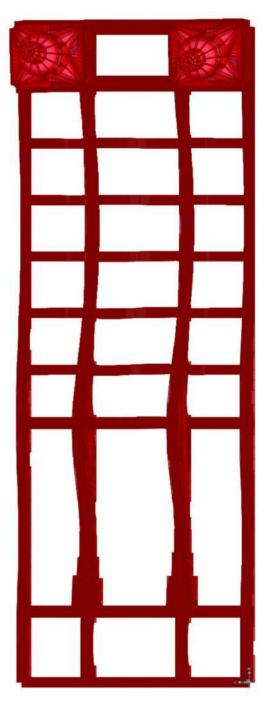


Figura 9: Modo de vibrar Y Elaboración: Departamento de Consultoría Técnica - UDA Civil

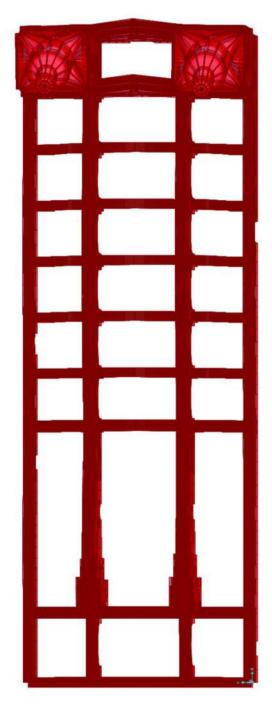
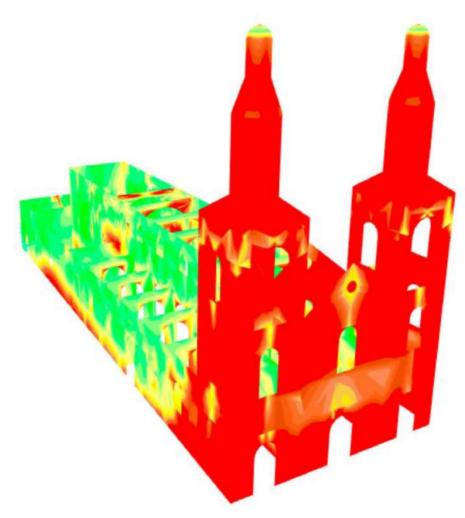


Figura 10: Modo de vibrar X Elaboración: Departamento de Consultoría Técnica - UDA Civil



DISEÑO

Una vez definida la configuración estructural de la edificación, se procede a realizar un análisis por resistencia en función de las cargas establecidas. Se verifica el diseño de las secciones mediante un software especializado, y se corrobora la información en hojas de cálculo de elaboración propia.

7.1 Cargas actuantes

Debido a la cantidad de elementos, y numero de combinaciones, no es posible indicar de manera grafica todos los resultados obtenidos para cada elemento. A continuación, se indican los diagramas de las envolventes máximas y mínimas para los distintos esfuerzos.

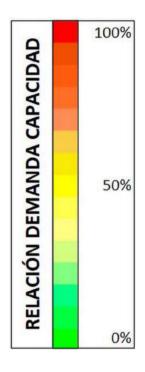


Figura 11: Resultado por mapa de color del diagrama general de esfuerzo a tracción Elaboración: Departamento de Consultoría Técnica - UDA Civil

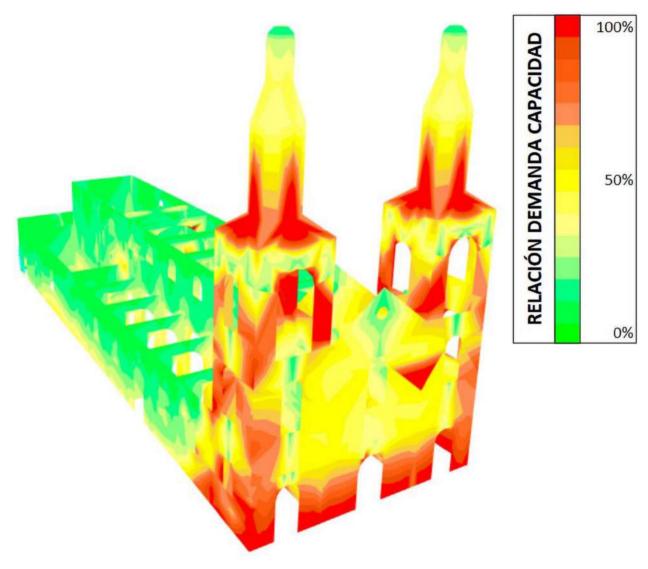


Figura 12: Resultado por mapa de color del diagrama general de esfuerzo a compresión Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2 Verificación por resistencia última de estado actual, propuesta de rehabilitación inicial

Con los esfuerzos máximos generados a través de las distintas combinaciones de carga se procede a realizar la verificación del diseño por resistencia última (Load and Resistance Factor Design, LRFD).

Se asume como primera opción el uso de micropilotes y tensores anclados internos en los muros de mampostería, para mejorar la resistencia y la ductilidad del sistema portante. Cabe indicar que el procedimiento de instalación de tensores internos anclados en mamposterías portantes, ya ha sido utilizado y probado en obras patrimoniales similares alrededor del mundo y dentro de nuestro país. Tal es el caso de la recuperación del **"Teatro León"** de la ciudad de Riobamba (2020), cuya rehabilitación de acuerdo con la versión de José Vázquez Calero, asesor estructural de esa obra: "cuenta con un sistema de muros portantes en piedra tallada de cangahua volcánica, que tenía la particularidad que el anclaje especificaba el uso de mortero hidráulico de alta resistencia. Sin embargo, al contacto con el agua la piedra perdía propiedades mecánicas de anclaje y fue necesario la utilización de epóxicos expansivos, cumpliendo así, el encamisado del núcleo de muro central con estas tecnologías. El objetivo fue cumplido y se mejoró la ductilidad de sistema portante, con micropilotes, encamisado y mantos de fibra de carbono".

Se conoce además la experiencia similar en el edifico patrimonial del templo de "San Francisco de Quito", del uso de micropilotes y anclajes."

Por otro lado, otras técnicas de reforzamiento y mejoramiento de la demanda sísmica en obras patrimoniales hacen relación al encamisado de muros portantes con hormigón armado, con mallas, vinculados a las paredes existentes mediante un sistema de anclaje de pines, mejorando de manera sustancial la ductilidad de los muros (comportamiento ante acciones sísmicas), procedimiento investigado y recomendado por Patricio Placencia Andrade, anteriormente citado en este documento.

La propuesta del encamisado, incluye además la utilización de un manto de carbono, una técnica novedosa en el reforzamiento de muros portantes que aporta resistencia y funcionalidad en la instalación y se acomoda a la geometría de los elementos estructurales. Al respecto existe una especificación técnica desarrollada para el montaje e instalación del manto de carbono, cuyo detalle consta en la norma norteamericana ACI 440.2R

En este capítulo, se muestra gráficamente la comparativa entre el estado actual y el esperado, posterior a la implementación del reforzamiento. A continuación, se indican los resultados obtenidos para cada uno de los ejes, junto con la propuesta de reforzamiento planteado para estos elementos estructurales.

7.2.1 EJE A

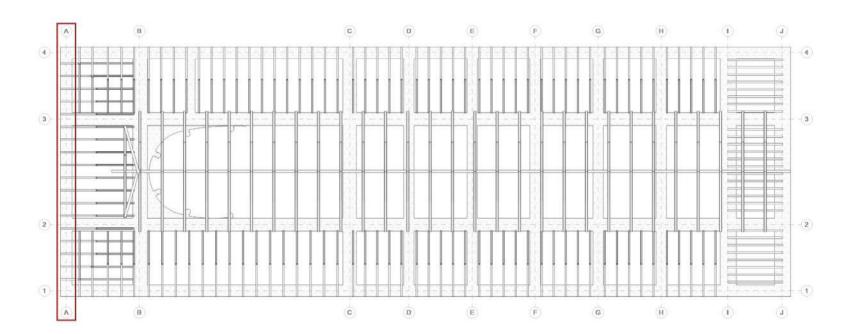


Figura 13: Distribución espacial del eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	108,00	[cm]	Espesor de la mampostería
h	7,85	[m]	Altura efectiva del elemento
Ae	10.800,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 16: Características de los materiales y geometría del eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

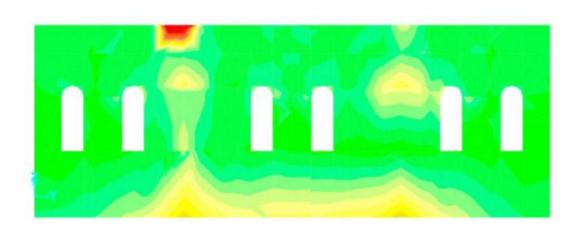


Figura 14: Diagrama de esfuerzo a tracción eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	17,76	[kgf/cm ²]	Esfuerzo a tracción último
D/C	2,54	No cumple	

Tabla 17: Esfuerzos admisibles para tracción axial del eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

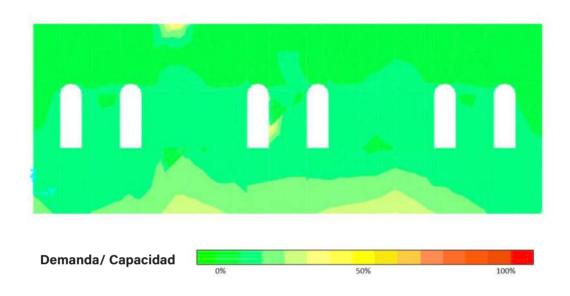


Figura 15: Diagrama de esfuerzo a compresión eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,99	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm²]	Máxima resistencia axial teórica
φ fa	28,39	[kgf/cm ²]	Resistencia nominal a compresión
fa u	13,22	[kgf/cm²]	Esfuerzo a compresión último
D/C	0,47	Ok	

Tabla 18: Esfuerzos admisibles para compresión axial del eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

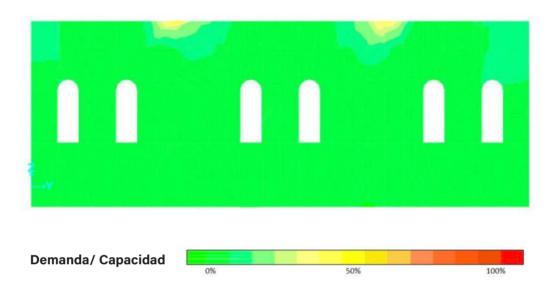


Figura 16: Diagrama de esfuerzo a cortante eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

		<u> </u>	
V	1,64	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	0,52	Ok	

Tabla 19: Esfuerzos admisibles para cortante del eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

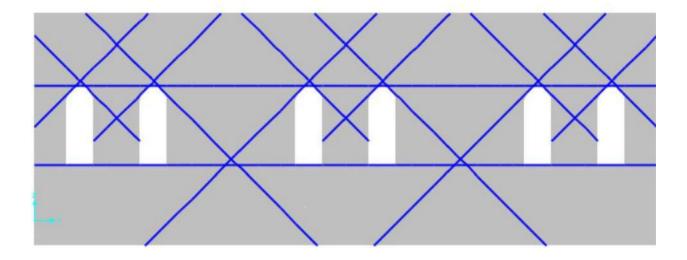


Figura 17: Esquema de reforzamiento eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

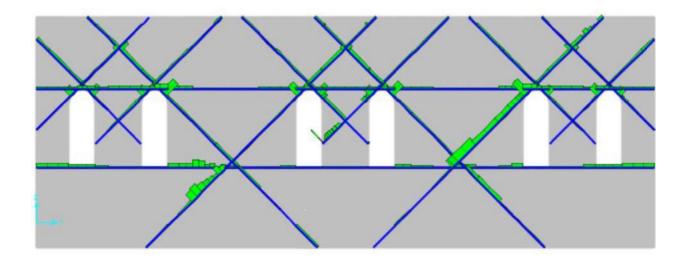


Figura 18: Fuerzas axiales en elementos de reforzamiento eje A Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.2 EJE B

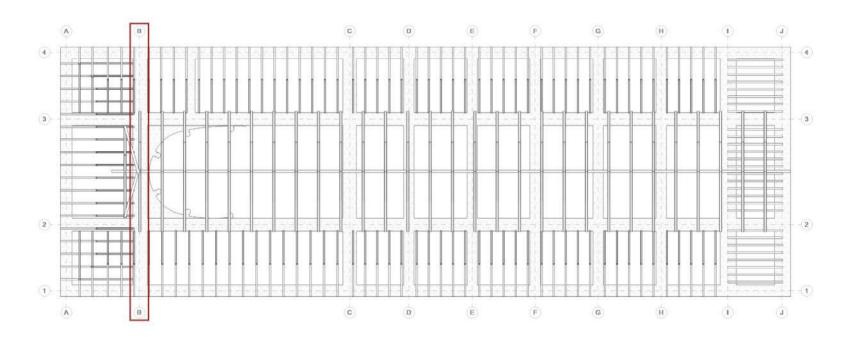


Figura 19: Distribución espacial del eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	120,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	12.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 20: Características de los materiales y geometría del eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

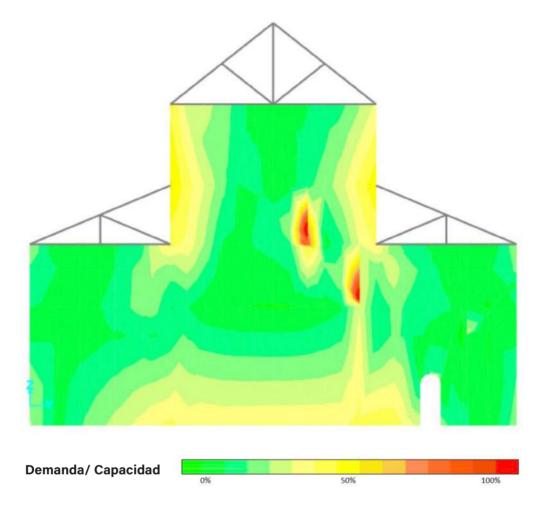


Figura 20: Diagrama de esfuerzo a tracción eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	7,93	[kgf/cm ²]	Esfuerzo a tracción último
D/C	1,14	No cumple	

Tabla 21: Esfuerzos admisibles para tracción axial del eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

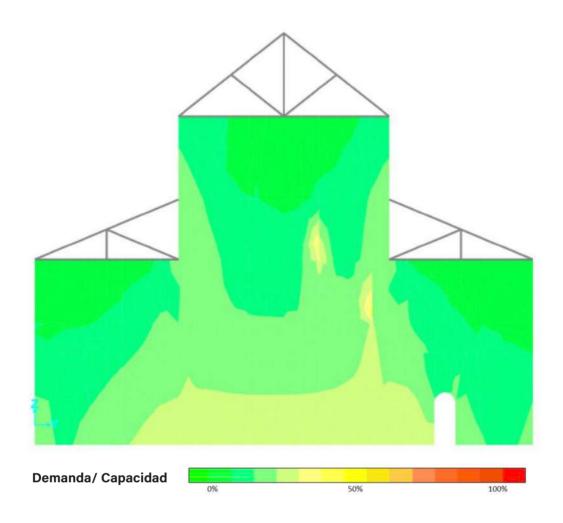


Figura 21: Diagrama de esfuerzo a compresión eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,97	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
фfa	27,75	[kgf/cm²]	Resistencia nominal a compresión
fa u	10,93	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,39	Ok	

Tabla 22: Esfuerzos admisibles para compresión axial del eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

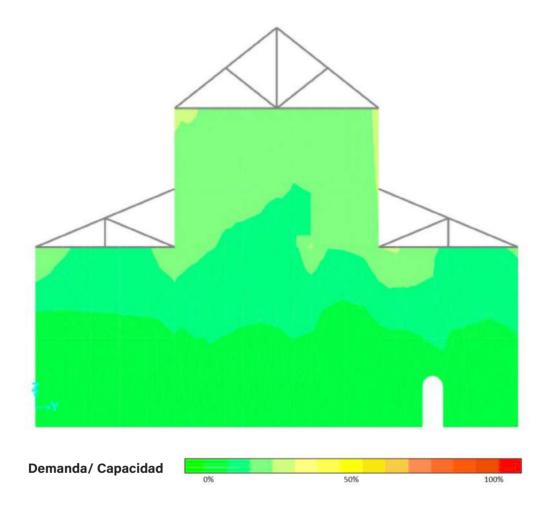


Figura 22: Diagrama de esfuerzo a cortante eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

V	0,86	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,27	Ok	

Tabla 23: Esfuerzos admisibles para cortante del eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

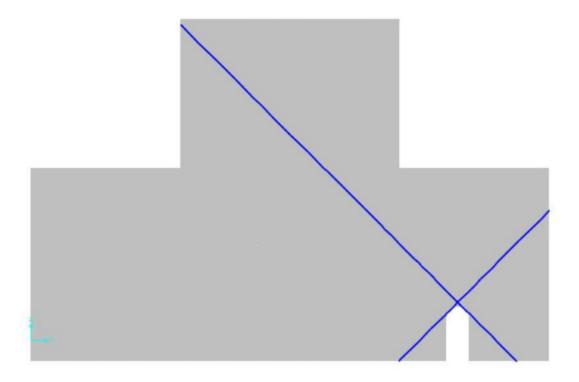


Figura 23: Esquema de reforzamiento eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

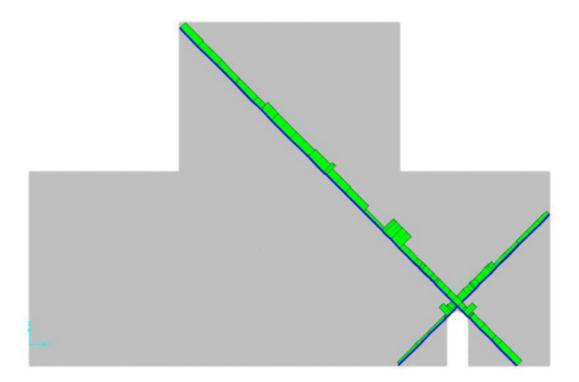


Figura 24: Fuerzas axiales en elementos de reforzamiento eje B Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.3 EJE C

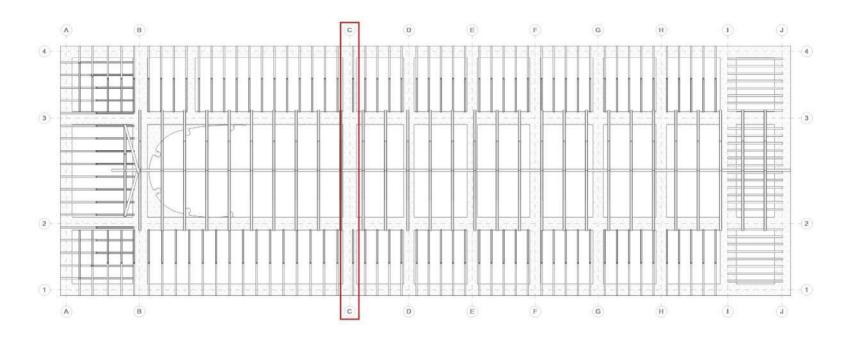


Figura 25: Distribución espacial del eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	120,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	12.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 24: Características de los materiales y geometría del eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

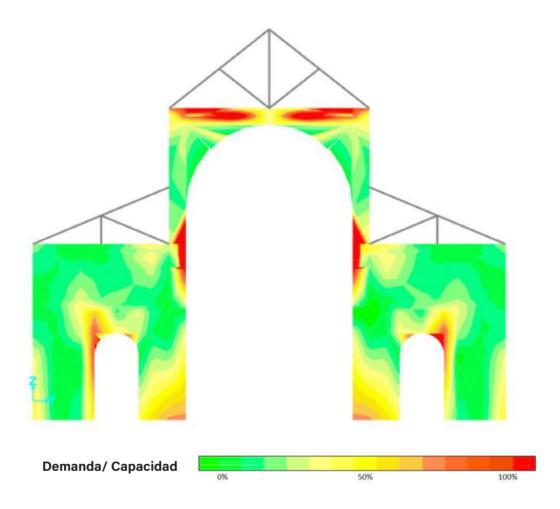


Figura 26: Diagrama de esfuerzo a tracción eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	27,14	[kgf/cm ²]	Esfuerzo a tracción último
D/C	3,89	No cumple	

Tabla 25: Esfuerzos admisibles para tracción axial del eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

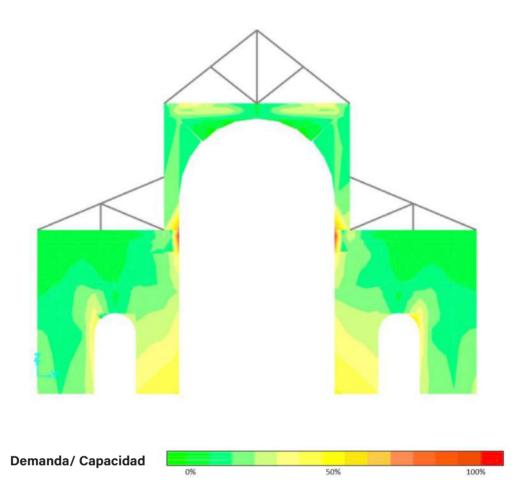


Figura 27: Diagrama de esfuerzo a compresión eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,97	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	27,75	[kgf/cm ²]	Resistencia nominal a compresión
fa u	27,17	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,98	Ok	

Tabla 26: Esfuerzos admisibles para compresión axial del eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

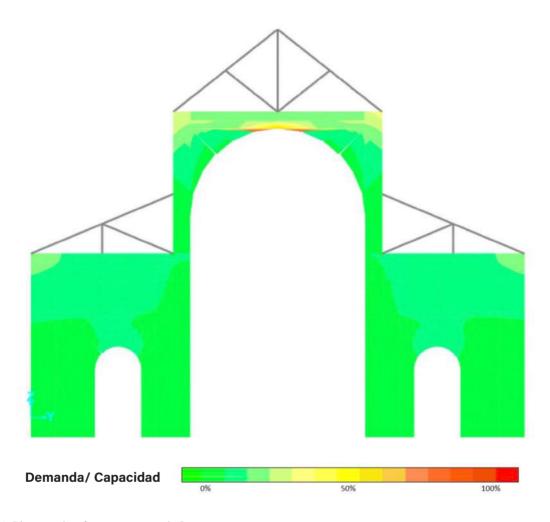


Figura 28: Diagrama de esfuerzo a cortante eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

		•	
V	3,13	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	0,99	Ok	

Tabla 27: Esfuerzos admisibles para cortante del eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

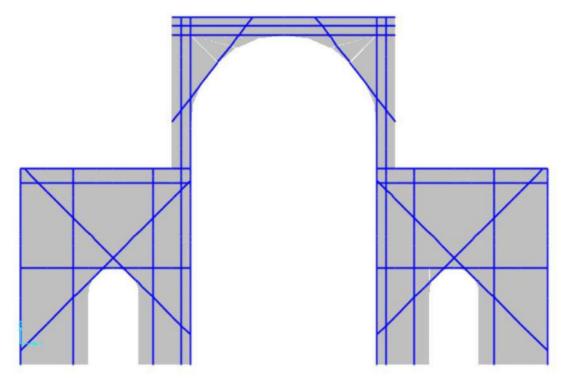


Figura 29: Esquema de reforzamiento eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

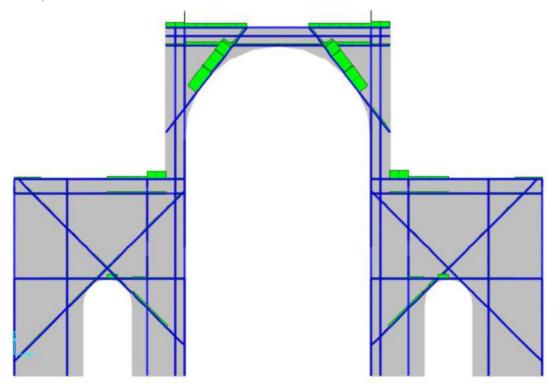


Figura 30: Fuerzas axiales en elementos de reforzamiento eje C Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.4 EJE D

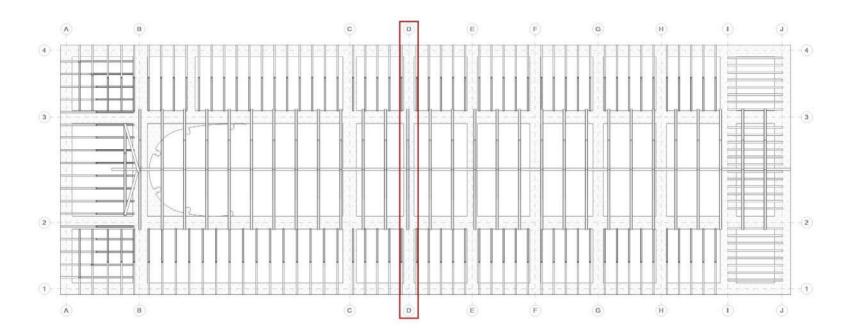


Figura 31: Distribución espacial del eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	100,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	10.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 28: Características de los materiales y geometría del eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

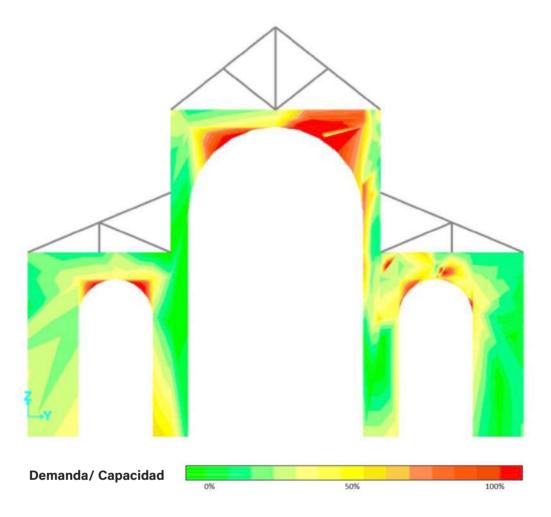


Figura 32: Diagrama de esfuerzo a tracción eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	35,34	[kgf/cm ²]	Esfuerzo a tracción último
D/C	5,06	No cumple	

Tabla 29: Esfuerzos admisibles para tracción axial del eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

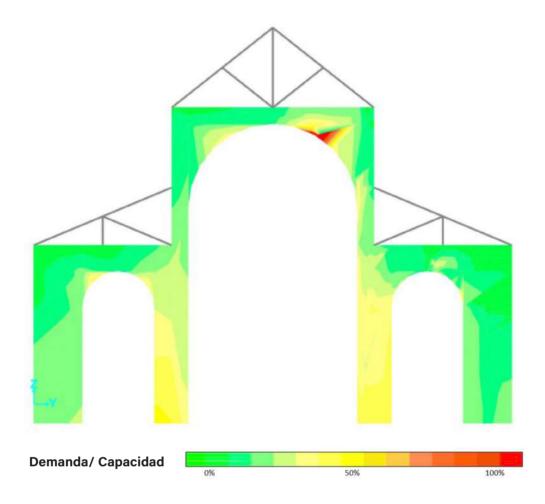


Figura 33: Diagrama de esfuerzo a compresión eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

Re	0,95	[-]	Coeficiente de reducción por esbeltez	
fa	59,50	[kgf/cm²]	Máxima resistencia axial teórica	
φ fa	27,16	[kgf/cm ²]	Resistencia nominal a compresión	
fa u	26,40	[kgf/cm ²]	Esfuerzo a compresión último	
D/C	0,97	Ok		

Tabla 30: Esfuerzos admisibles para compresión axial del eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

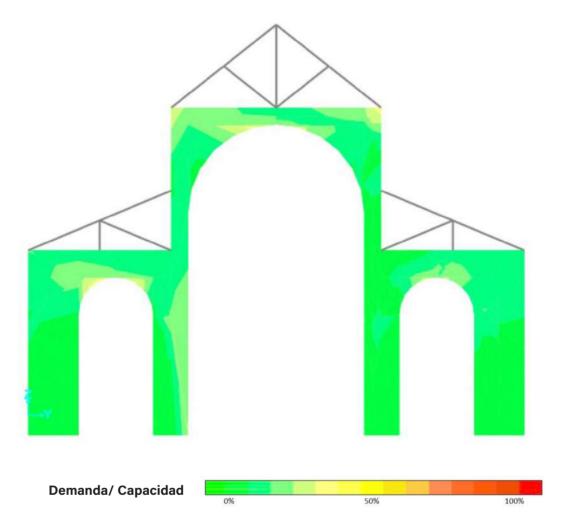


Figura 34: Diagrama de esfuerzo a cortante eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

V	1,02	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,32	Ok	

Tabla 31: Esfuerzos admisibles para cortante del eje Elaboración: Departamento de Consultoría Técnica - UDA Civil

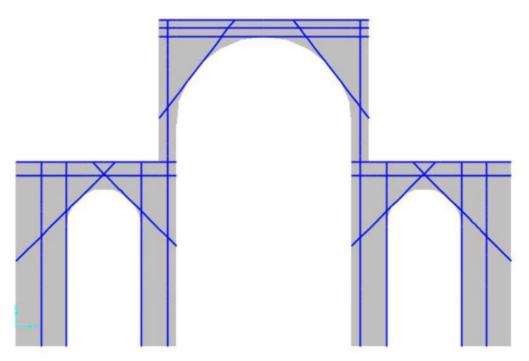


Figura 35: Esquema de reforzamiento eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

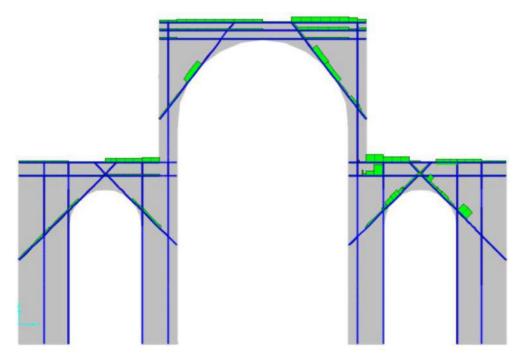


Figura 36: Fuerzas axiales en elementos de reforzamiento eje D Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.5 EJE E

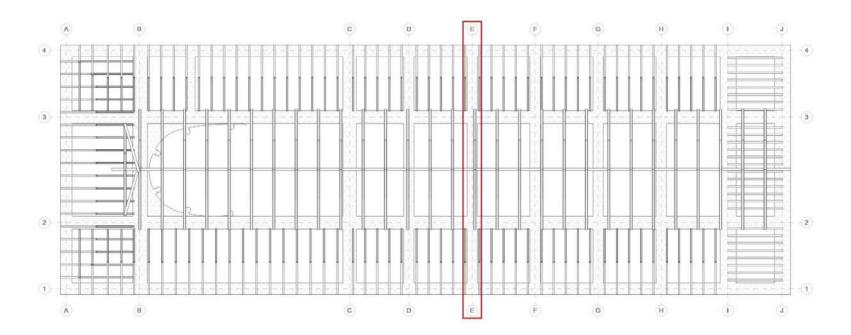


Figura 37: Distribución espacial del eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	100,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	10.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 32: Características de los materiales y geometría del eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

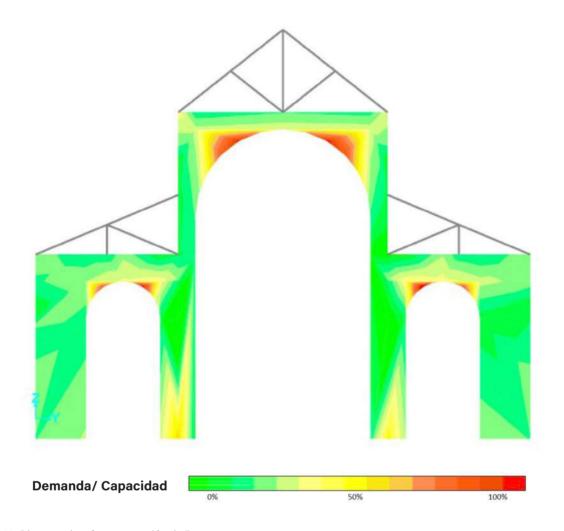


Figura 38: Diagrama de esfuerzo a tracción eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	8,20	[kgf/cm ²]	Esfuerzo a tracción último
D/C	1,17	No cumple	

Tabla 33: Esfuerzos admisibles para tracción axial del eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

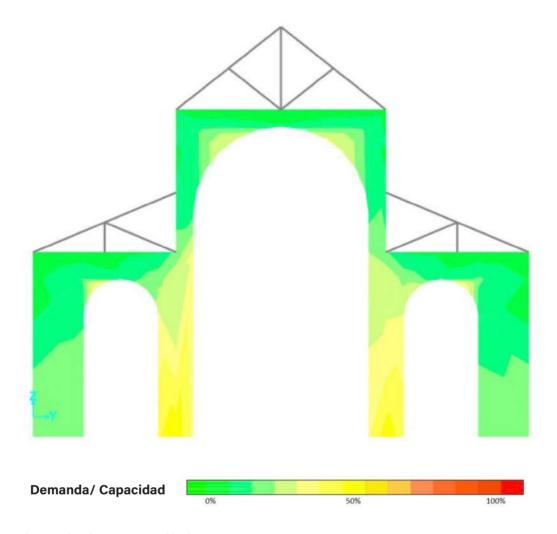


Figura 39: Diagrama de esfuerzo a compresión eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

Re	0,95	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	27,16	[kgf/cm²]	Resistencia nominal a compresión
fa u	13,99	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,52	Ok	

Tabla 34: Esfuerzos admisibles para compresión axial del eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

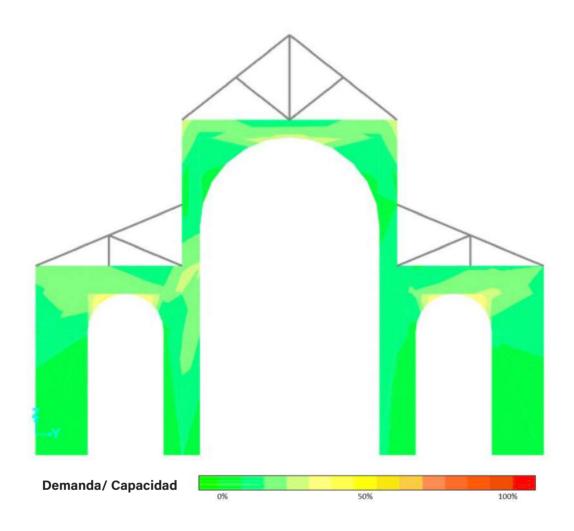


Figura 40: Diagrama de esfuerzo a cortante eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

		•	
V	1,25	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	0,39	Ok	

Tabla 35: Esfuerzos admisibles para cortante del eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

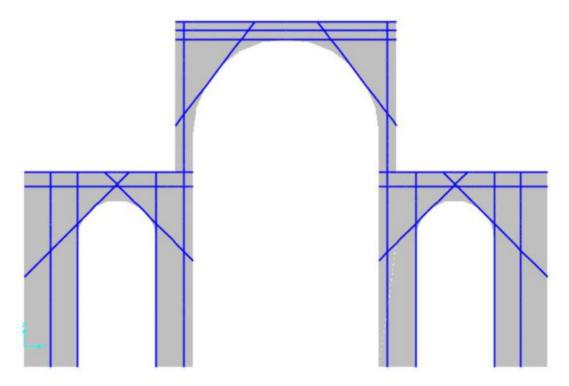


Figura 41: Esquema de reforzamiento eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

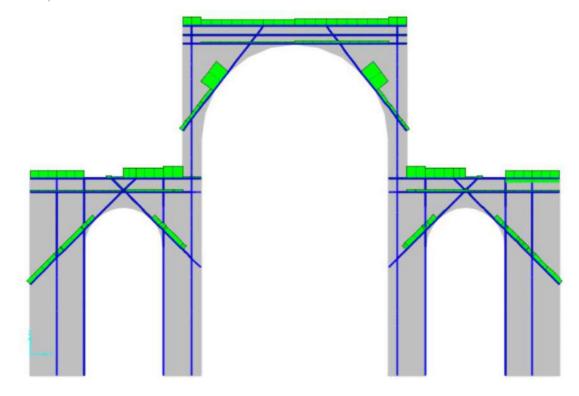


Figura 42: Fuerzas axiales en elementos de reforzamiento eje E Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.6 EJE F

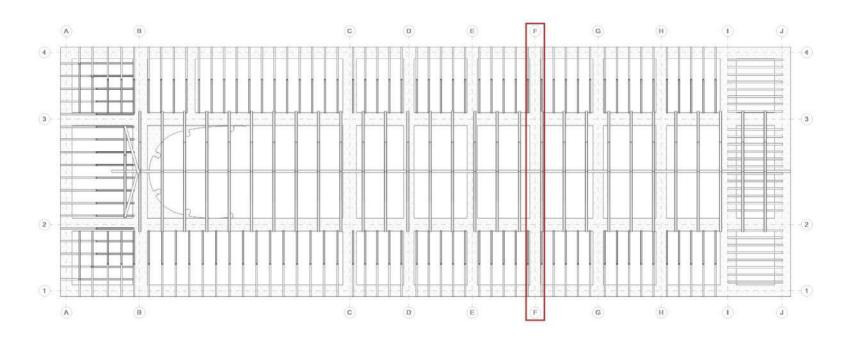


Figura 43: Distribución espacial del eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	100,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	10.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 36: Características de los materiales y geometría del eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

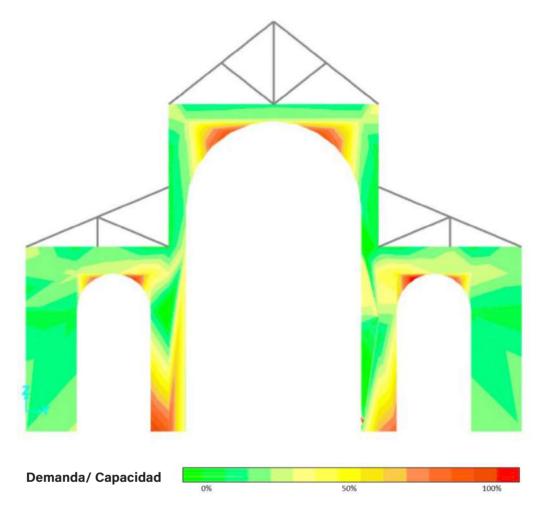


Figura 44: Diagrama de esfuerzo a tracción eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	8,34	[kgf/cm ²]	Esfuerzo a tracción último
D/C	1,19	No cumple	

Tabla 37: Esfuerzos admisibles para tracción axial del eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

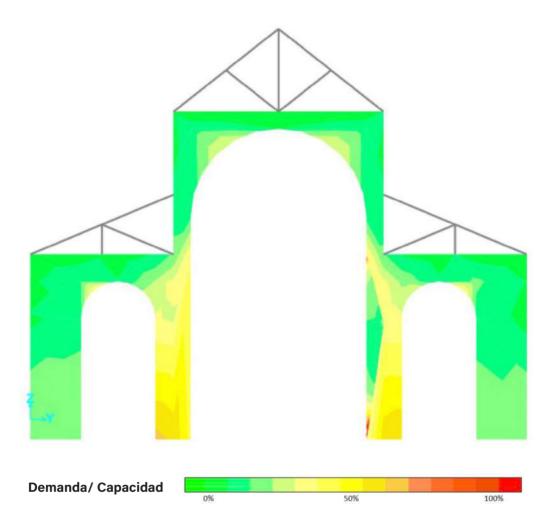


Figura 45: Diagrama de esfuerzo a compresión eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

Re	0,95	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm²]	Máxima resistencia axial teórica
φ fa	27,16	[kgf/cm ²]	Resistencia nominal a compresión
fa u	25,01	[kgf/cm²]	Esfuerzo a compresión último
D/C	0,92	Ok	

Tabla 38: Esfuerzos admisibles para compresión axial del eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

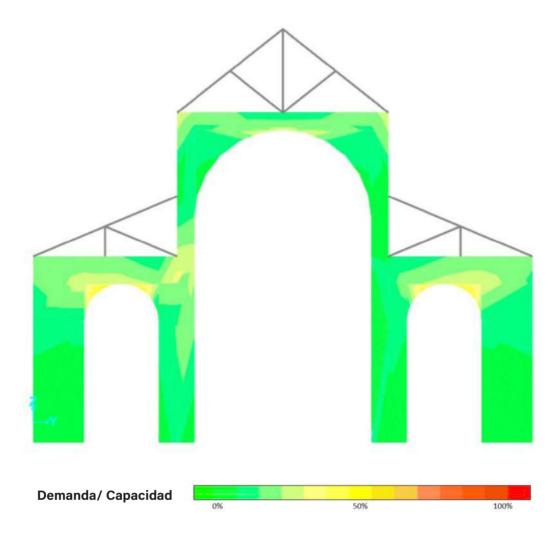


Figura 46: Diagrama de esfuerzo a cortante eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

V	1,47	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,46	Ok	

Tabla 39: Esfuerzos admisibles para cortante del eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

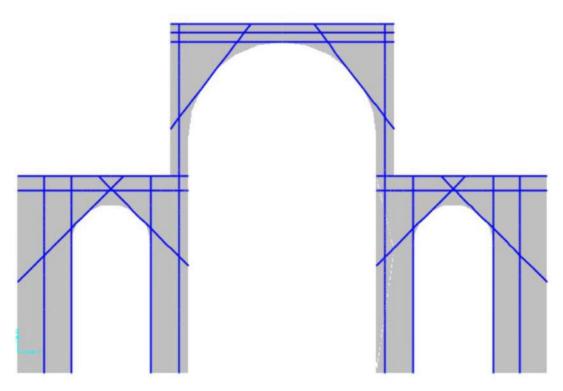


Figura 47: Esquema de reforzamiento eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

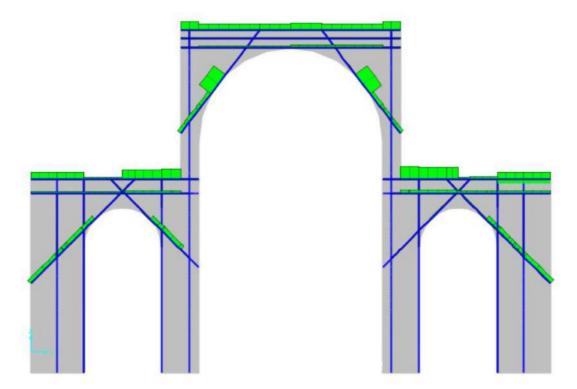


Figura 48: Fuerzas axiales en elementos de reforzamiento eje F Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.7 EJE G

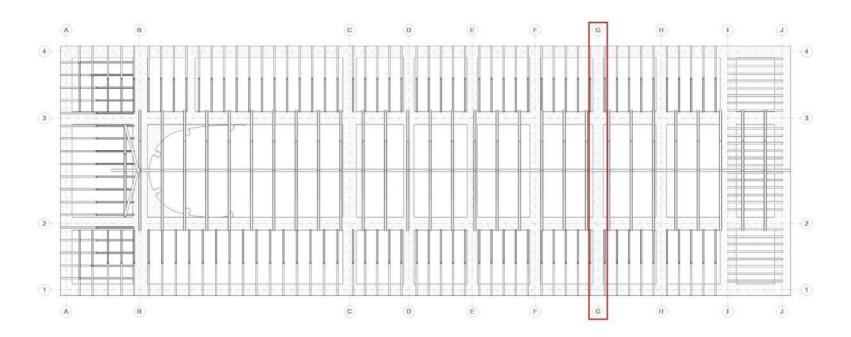


Figura 49: Distribución espacial del eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	100,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	10.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 40: Características de los materiales y geometría del eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

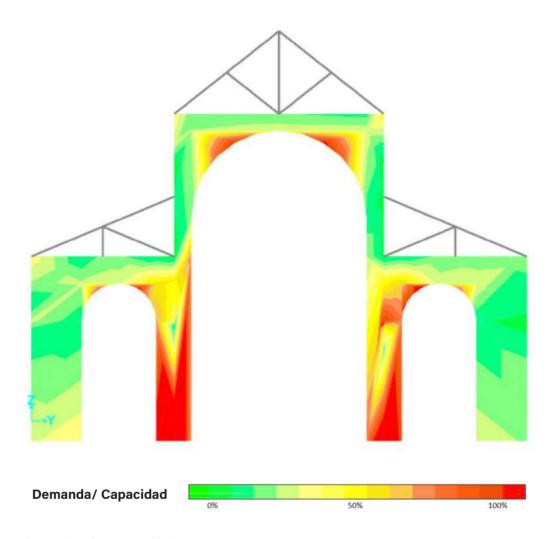


Figura 50: Diagrama de esfuerzo a tracción eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	11,04	[kgf/cm ²]	Esfuerzo a tracción último
D/C	1,58	No cumple	

Tabla 41: Esfuerzos admisibles para tracción axial del eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

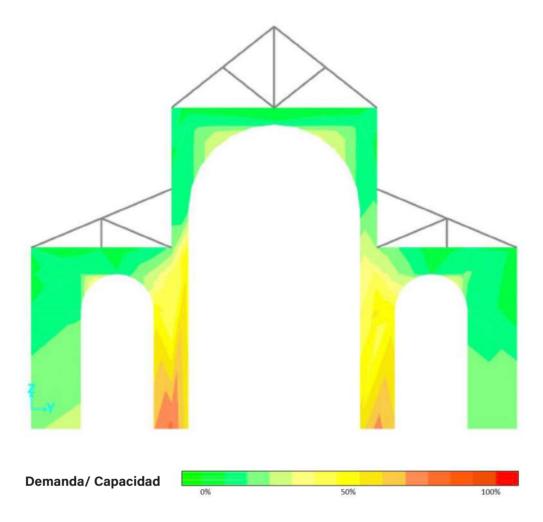


Figura 51: Diagrama de esfuerzo a compresión eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

Re	0,95	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	27,16	[kgf/cm ²]	Resistencia nominal a compresión
fa u	21,38	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,79	Ok	

Tabla 42: Esfuerzos admisibles para compresión axial del eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

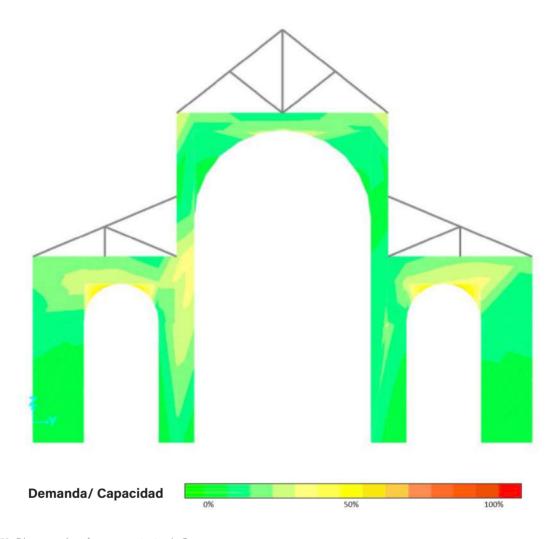


Figura 52: Diagrama de esfuerzo a cortante eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

V	1,68	[kgf/cm²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	0,53	Ok	

Tabla 43: Esfuerzos admisibles para cortante del eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

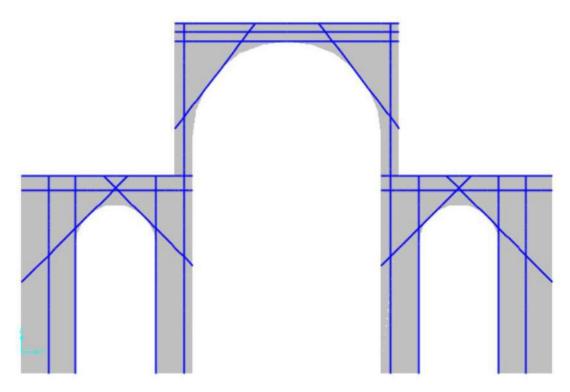


Figura 53: Esquema de reforzamiento eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

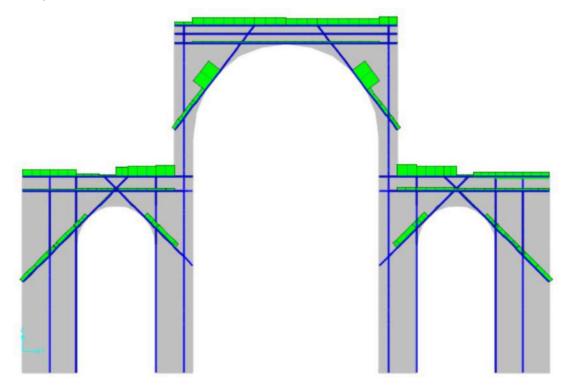


Figura 54: Fuerzas axiales en elementos de reforzamiento eje G Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.8 EJE H

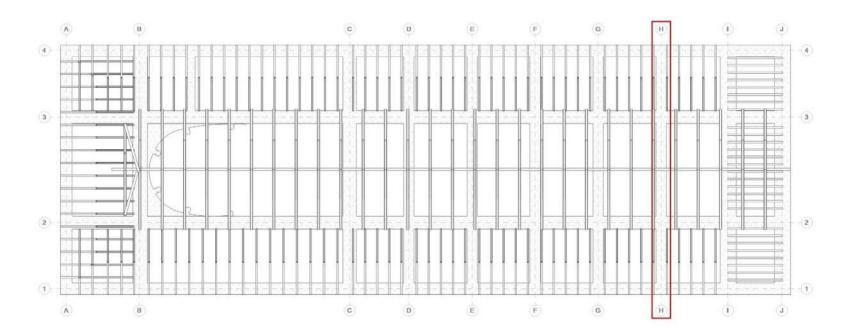


Figura 55: Distribución espacial del eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	100,00	[cm]	Espesor de la mampostería
h	14,65	[m]	Altura efectiva del elemento
Ae	10.000,00	[cm ²]	Área efectiva de la sección de mampostería

Tabla 44: Características de los materiales y geometría del eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

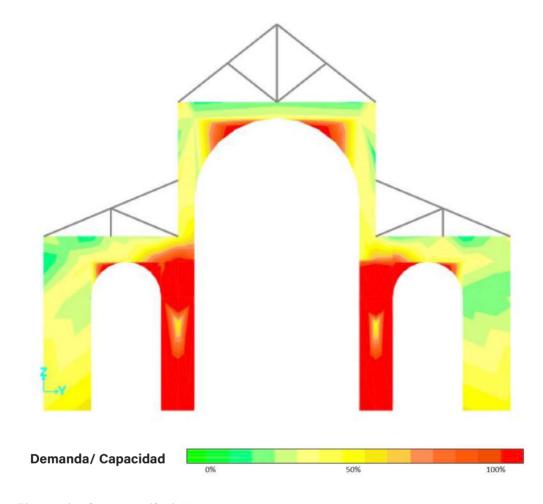


Figura 56: Diagrama de esfuerzo a tracción eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	13,90	[kgf/cm ²]	Esfuerzo a tracción último
D/C	1,99	No cumple	

Tabla 45: Esfuerzos admisibles para tracción axial del eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

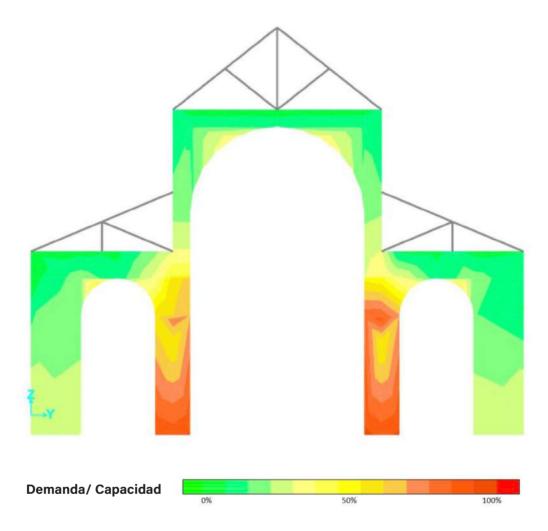


Figura 57: Diagrama de esfuerzo a compresión eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

Re	0,95	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	27,16	[kgf/cm²]	Resistencia nominal a compresión
fa u	25,84	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,95	Ok	

Tabla 46: Esfuerzos admisibles para compresión axial del eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

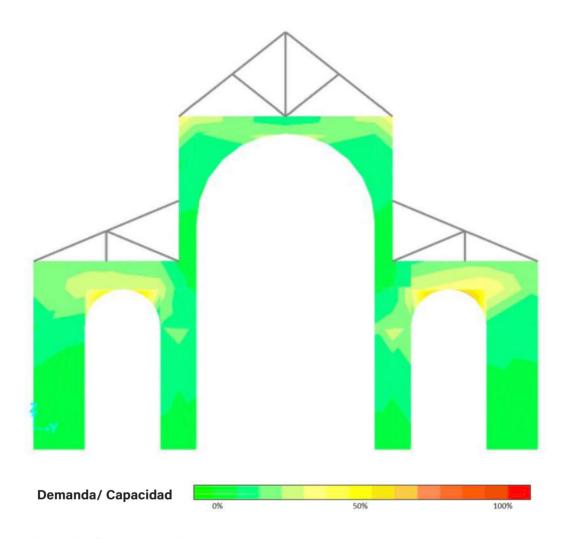


Figura 58: Diagrama de esfuerzo a cortante eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

V	1,94	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,61	Ok	

Tabla 47: Esfuerzos admisibles para cortante del eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

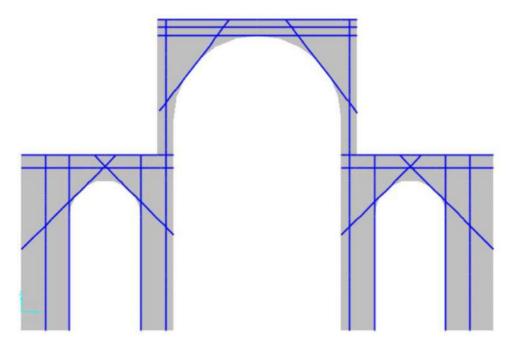


Figura 59: Esquema de reforzamiento eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

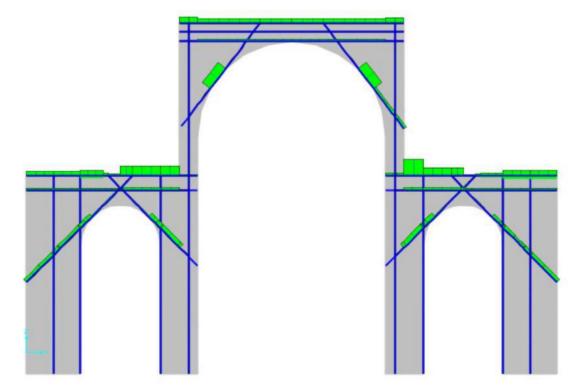


Figura 60: Fuerzas axiales en elementos de reforzamiento eje H Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.9 EJE I

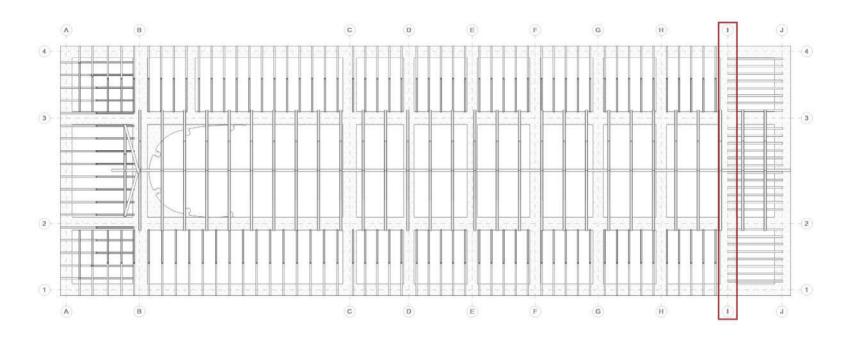


Figura 61: Distribución espacial del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	160,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	16.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 48: Características de los materiales y geometría del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

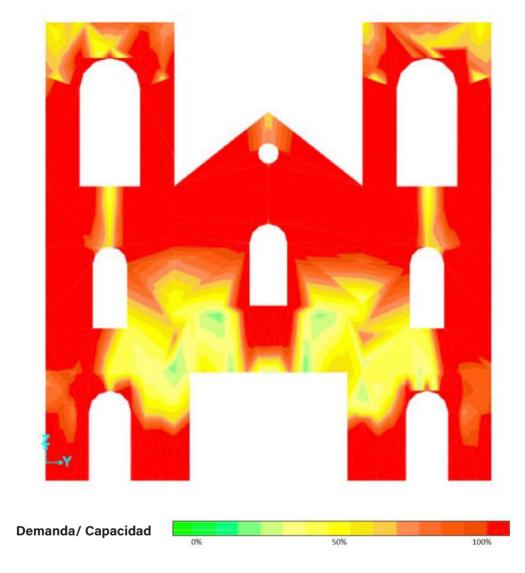


Figura 62: Diagrama de esfuerzo a tracción eje I Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm²]	Resistencia nominal a tensión
fr u	29,90	[kgf/cm ²]	Esfuerzo a tracción último
D/C	4,28	No cumple	

Tabla 49: Esfuerzos admisibles para tracción axial del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

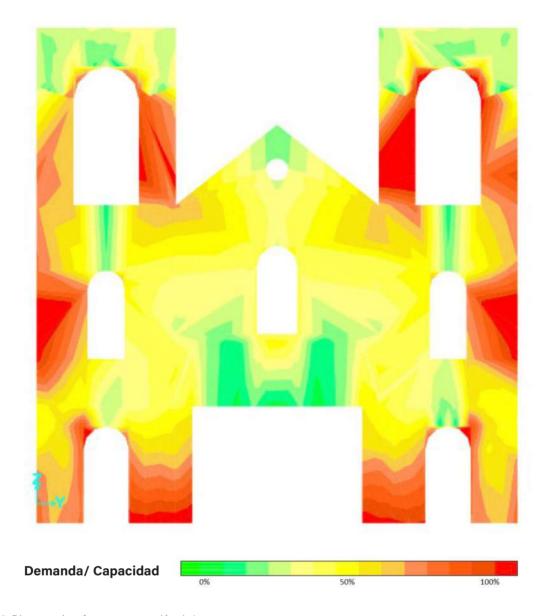


Figura 63: Diagrama de esfuerzo a compresión eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

Estacizos damisibles para compresión axial				
Re	0,95	[-]	Coeficiente de reducción por esbeltez	
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica	
φ fa	27,17	[kgf/cm ²]	Resistencia nominal a compresión	
fa u	42,20	[kgf/cm ²]	Esfuerzo a compresión último	
D/C	1,55	No cumple		

Tabla 50: Esfuerzos admisibles para compresión axial del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

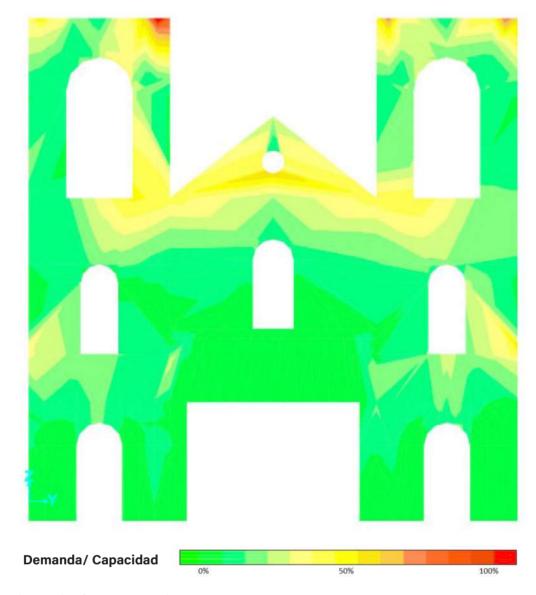


Figura 64: Diagrama de esfuerzo a cortante eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

V	3,39	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	1,07	No cumple	

Tabla 51: Esfuerzos admisibles para cortante del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

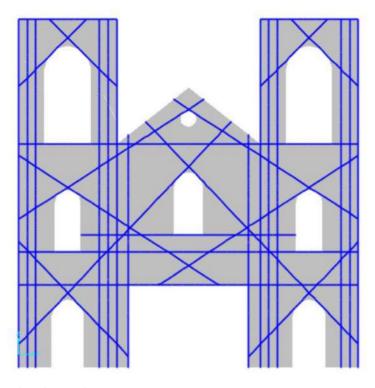


Figura 65: Esquema de reforzamiento interno eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

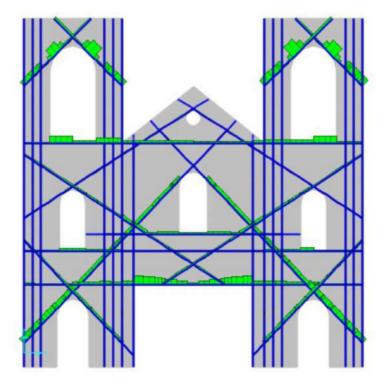


Figura 66: Fuerzas axiales en elementos de reforzamiento eje I Elaboración: Departamento de Consultoría Técnica - UDA Civil

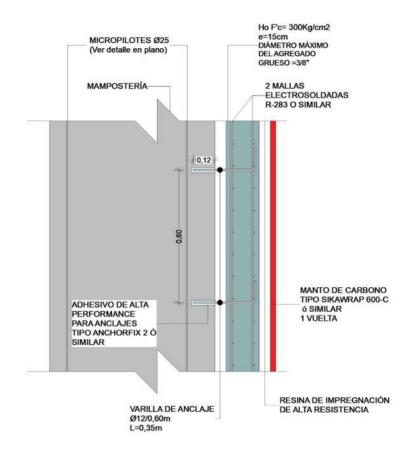


Figura 67: Esquema de reforzamiento externo eje I Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	160,00	[cm]	Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	16.000,00	[cm ²]	Área efectiva de la sección de mampostería	
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón	
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón	
е	15,00	[cm]	Espesor de la capa de hormigón	
fr	270,00	[kgf/cm]	Resistencia a la tracción	
Er	2.420.000,00	[kgf/cm²]	Módulo de elasticidad de la Fibra	
er	1,40	[mm]	Espesor de la capa de fibra de carbono	

Tabla 52: Características de los materiales y geometría de la sección compuesta propuesta para el eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

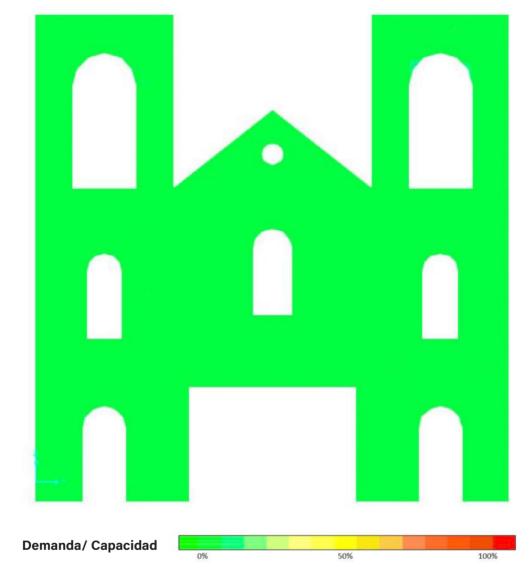


Figura 68: Diagrama de esfuerzo a tracción eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	95,72	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,08	ok	

Tabla 53: Esfuerzos admisibles para tracción axial del eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

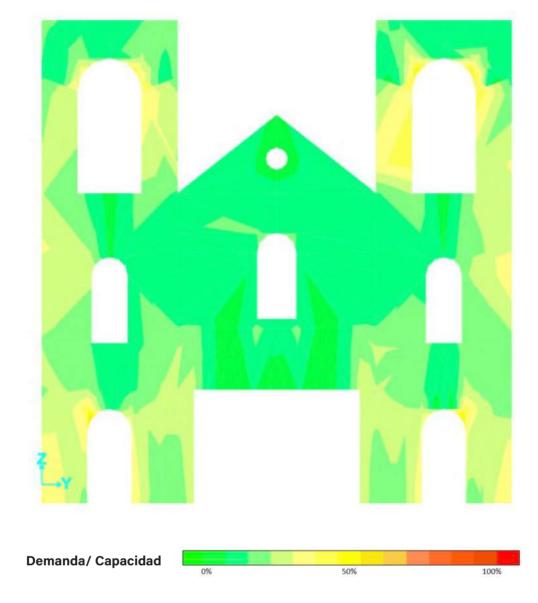


Figura 69: Diagrama de esfuerzo a compresión eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

		•	•
Re	0,95	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φ fa	27,17	[kgf/cm ²]	Resistencia nominal a compresión de la mampostería
φf'c	195,00	[kgf/cm ²]	Resistencia nominal a compresión del hormigón
φС	222,17	[kgf/cm ²]	Resistencia nominal a compresión de la sección
fa u	134,58	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,61	Ok	

Tabla 54: Esfuerzos admisibles para compresión axial del eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

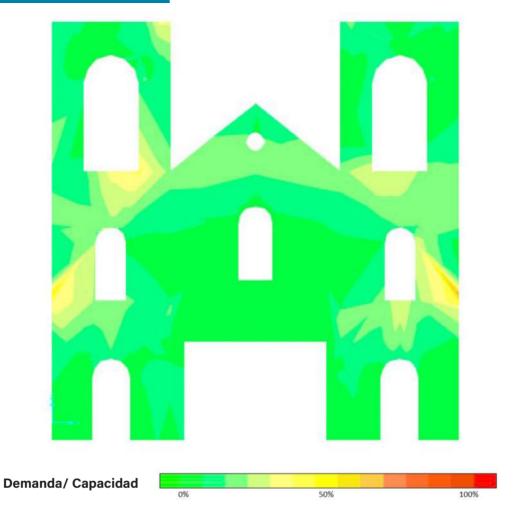


Figura 70: Diagrama de esfuerzo a cortante eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

Esideizo admisible para cortante en muros de la sección compuesta				
V	15,47	[kgf/cm ²]	Cortante último	
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante de la mampostería	
ф Vc	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón	
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero	
Φ	6,00	[mm]	Diámetro del acero de refuerzo	
S	10,00	[cm]	Separación entre acero de refuerzo	
n	10,00	[-]	Número de varillas por metro lineal	
Av	0,28	[cm ²]	Área de cortante	
Nm	2,00	[-]	Número de mallas electrosoldadas	
φVs	11,88	[kgf/cm ²]	Resistencia nominal a cortante del acero de refuerzo	
φV	21,94	[kgf/cm²]	Resistencia nominal a cortante de la sección	
D/C	0,71	Ok		

Tabla 55: Esfuerzos admisibles para cortante del eje I (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.10 EJE J

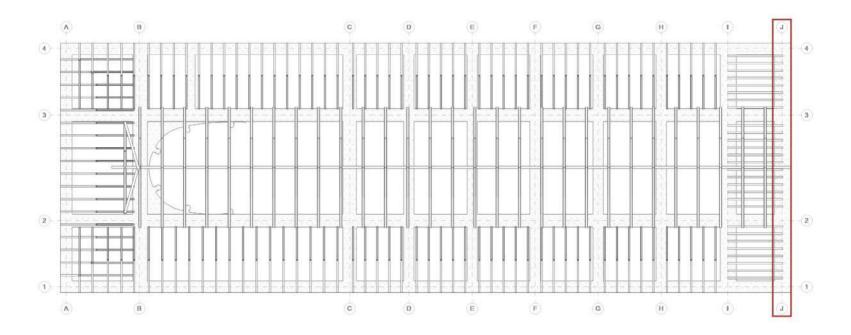


Figura 71: Distribución espacial del eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm²]	cm²] Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	150,00	[cm]	Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	15.000,00	[cm²]	Área efectiva de la sección de mampostería	

Tabla 56: Características de los materiales y geometría del eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

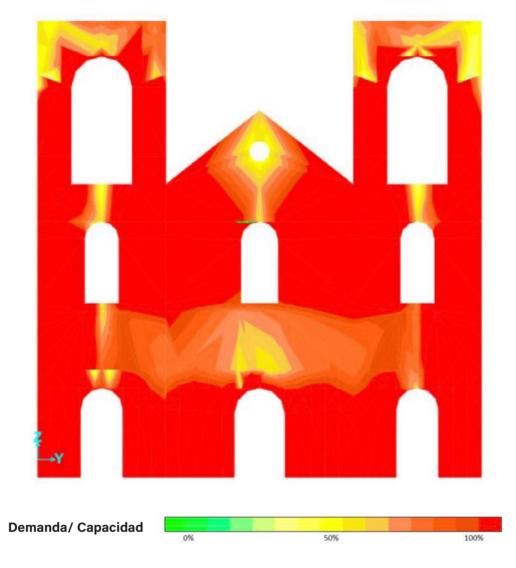


Figura 72: Diagrama de esfuerzo a tracción eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	31,96	[kgf/cm ²]	Esfuerzo a tracción último
D/C	4,58	No cumple	

Tabla 57: Esfuerzos admisibles para tracción axial del eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

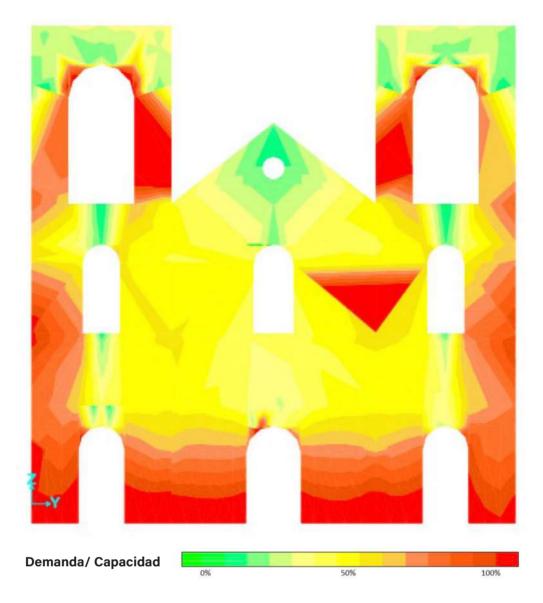


Figura 73: Diagrama de esfuerzo a compresión eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

	Lordo Loo damio bio para comprocion axiai				
Re	0,94	[-]	Coeficiente de reducción por esbeltez		
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica		
φ fa	26,87	[kgf/cm ²]	Resistencia nominal a compresión		
fa u	54,43	[kgf/cm ²]	Esfuerzo a compresión último		
D/C	2,03	No cumple			

Tabla 58: Esfuerzos admisibles para compresión axial del eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

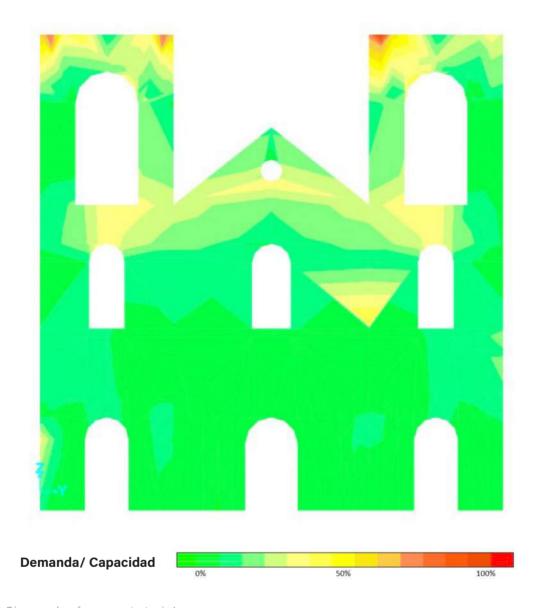


Figura 74: Diagrama de esfuerzo a cortante eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

		•	
V	3,08	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,97	Ok	

Tabla 59: Esfuerzos admisibles para cortante del eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

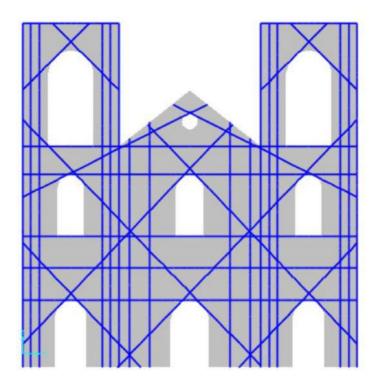


Figura 75: Esquema de reforzamiento interno eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

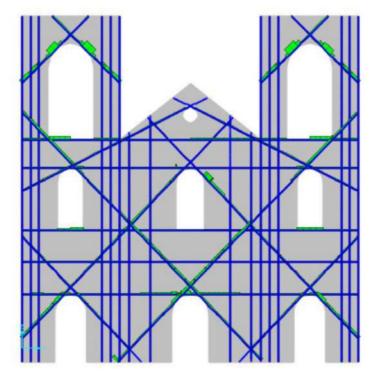


Figura 76: Fuerzas axiales en elementos de reforzamiento eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

Figura 77: Esquema de reforzamiento externo eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	150,00	[cm]	Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	15.000,00	[cm ²]	Área efectiva de la sección de mampostería	
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón	
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón	
е	15,00	[cm]	Espesor de la capa de hormigón	
fr	270,00	[kgf/cm]	Resistencia a la tracción	
Er	2.420.000,00	[kgf/cm²]	Módulo de elasticidad de la Fibra	
er	1,40	[mm]	Espesor de la capa de fibra de carbono	

Tabla 60: Características de los materiales y geometría de la sección compuesta propuesta para el eje J Elaboración: Departamento de Consultoría Técnica - UDA Civil

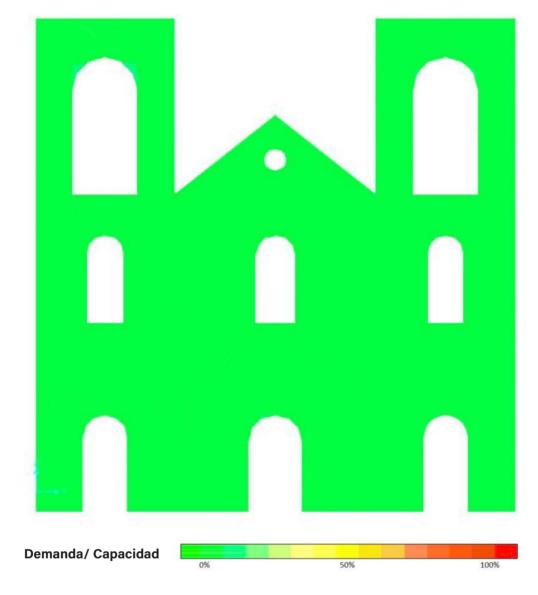


Figura 78: Diagrama de esfuerzo a tracción eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	100,73	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,09	ok	

Tabla 61: Esfuerzos admisibles para tracción axial del eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

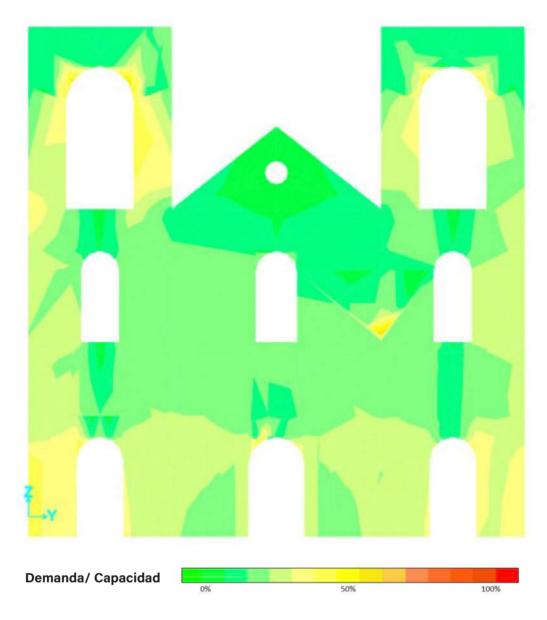


Figura 79: Diagrama de esfuerzo a compresión eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

Re	0,94	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φfa	26,87	[kgf/cm²]	Resistencia nominal a compresión de la mampostería
φf'c	195,00	[kgf/cm ²]	Resistencia nominal a compresión del hormigón
φС	221,87	[kgf/cm ²]	Resistencia nominal a compresión de la sección
fa u	132,36	[kgf/cm²]	Esfuerzo a compresión último
D/C	0,60	Ok	

Tabla 62: Esfuerzos admisibles para compresión axial del eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

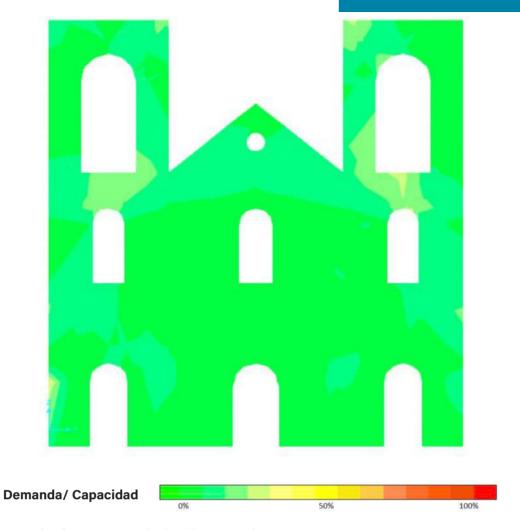


Figura 80: Diagrama de esfuerzo a cortante eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

	Estuerzo admisible para cortante en muros de la sección compuesta				
V	6,74	[kgf/cm ²]	Cortante último		
фVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante de la mampostería		
фVc	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón		
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero		
Ф	6,00	[mm]	Diámetro del acero de refuerzo		
S	10,00	[cm]	Separación entre acero de refuerzo		
n	10,00	[-]	Número de varillas por metro lineal		
Av	0,28	[cm ²]	Área de cortante		
Nm	2,00	[-]	Número de mallas electrosoldadas		
φVs	11,88	[kgf/cm ²]	Resistencia nominal a cortante del acero de refuerzo		
φV	21,94	[kgf/cm ²]	Resistencia nominal a cortante de la sección		
D/C	0,31	Ok			

Tabla 63: Esfuerzos admisibles para cortante del eje J (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.11 EJE 1

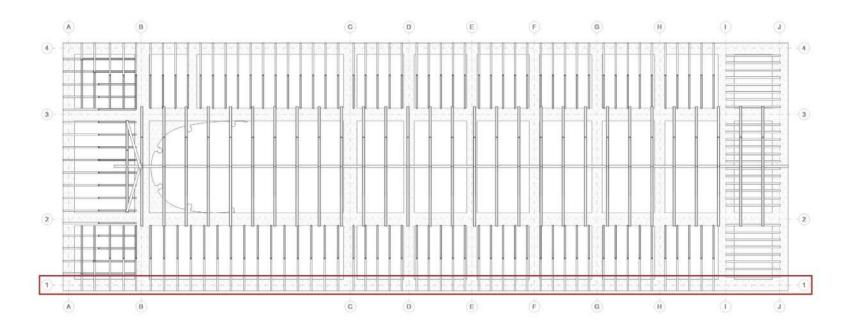


Figura 81: Distribución espacial del eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	108,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	10.800,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 64: Características de los materiales y geometría del eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

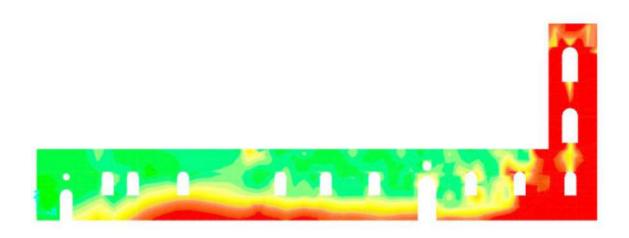


Figura 82: Diagrama de esfuerzo a tracción eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

		·	
fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	26,59	[kgf/cm ²]	Esfuerzo a tracción último
D/C	3,81	No cumple	

Tabla 65: Esfuerzos admisibles para tracción axial del eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

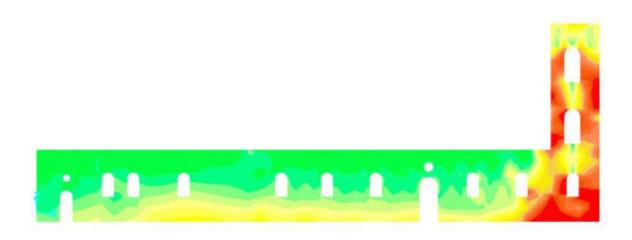


Figura 83: Diagrama de esfuerzo a compresión eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,84	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	24,04	[kgf/cm ²]	Resistencia nominal a compresión
fa u	36,81	[kgf/cm ²]	Esfuerzo a compresión último
D/C	1,53	No cumple	

Tabla 66: Esfuerzos admisibles para compresión axial del eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

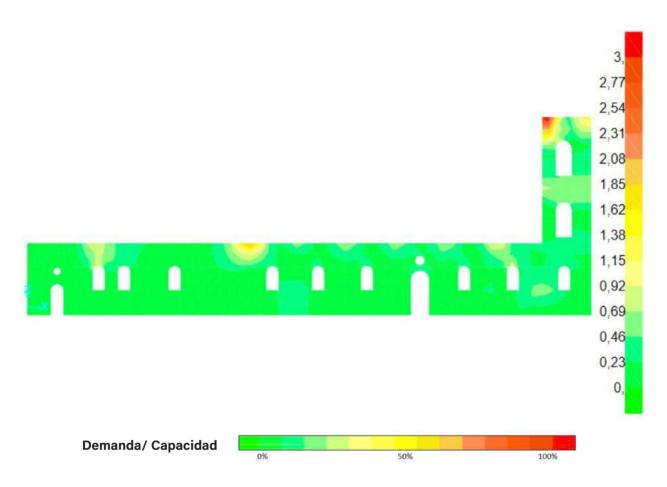


Figura 84: Diagrama de esfuerzo a cortante eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

V	4,39	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	1,38	No cumple	

Tabla 67: Esfuerzos admisibles para cortante del eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

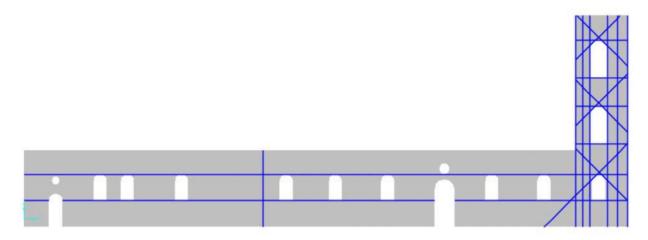


Figura 85: Esquema de reforzamiento interno eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil



Figura 86: Fuerzas axiales en elementos de reforzamiento eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

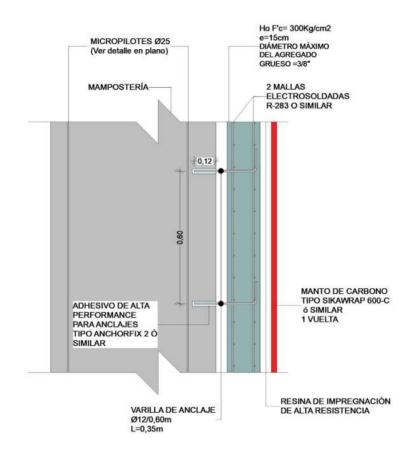


Figura 87: Esquema de reforzamiento externo eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	108,00	[cm]	Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	10.800,00	[cm ²]	Área efectiva de la sección de mampostería	
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón	
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón	
е	15,00	[cm]	Espesor de la capa de hormigón	
fr	270,00	[kgf/cm]	Resistencia a la tracción	
Er	2.420.000,00	[kgf/cm ²]	Módulo de elasticidad de la Fibra	
er	1,40	[mm]	Espesor de la capa de fibra de carbono	

Tabla 68: Características de los materiales y geometría de la sección compuesta propuesta para el eje 1 Elaboración: Departamento de Consultoría Técnica - UDA Civil

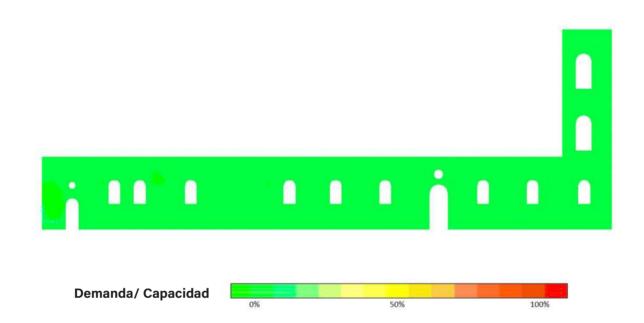


Figura 88: Diagrama de esfuerzo a tracción eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	73,64	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,06	ok	

Tabla 69: Esfuerzos admisibles para tracción axial del eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

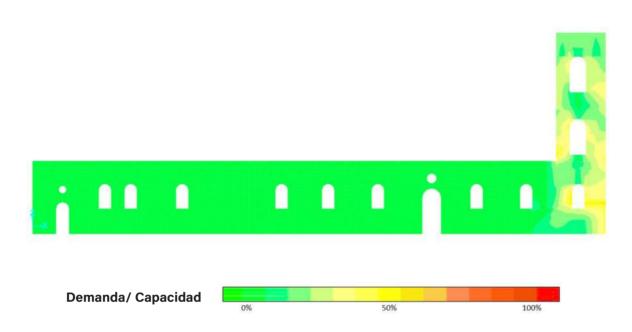


Figura 89: Diagrama de esfuerzo a compresión eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

Re	0,84	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φ fa	24,04	[kgf/cm²]	Resistencia nominal a compresión de la mampostería
φ f'c	195,00	[kgf/cm²]	Resistencia nominal a compresión del hormigón
φС	219,04	[kgf/cm²]	Resistencia nominal a compresión de la sección
fa u	128,04	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,58	Ok	

Tabla 70: Esfuerzos admisibles para compresión axial del eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

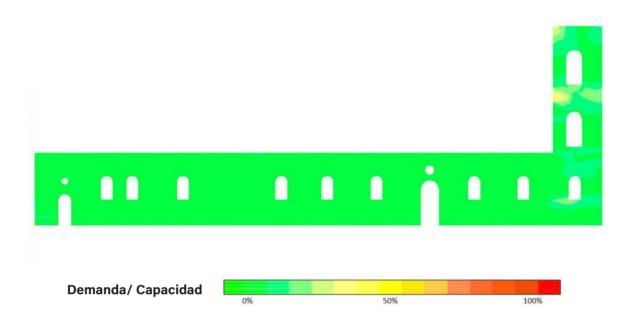


Figura 90: Diagrama de esfuerzo a cortante eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

	Estuerzo ad	amisible para corta	nte en muros de la sección compuesta
V	9,71	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm²]	Resistencia nominal a cortante de la mampostería
фVc	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero
Φ	6,00	[mm]	Diámetro del acero de refuerzo
S	10,00	[cm]	Separación entre acero de refuerzo
n	10,00	[-]	Número de varillas por metro lineal
Av	0,28	[cm²]	Área de cortante
Nm	2,00	[-]	Número de mallas electrosoldadas
φVs	11,88	[kgf/cm²]	Resistencia nominal a cortante del acero de refuerzo
φV	21,94	[kgf/cm²]	Resistencia nominal a cortante de la sección
D/C	0,44	Ok	

Tabla 71: Esfuerzos admisibles para cortante del eje 1 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.12 EJE 2

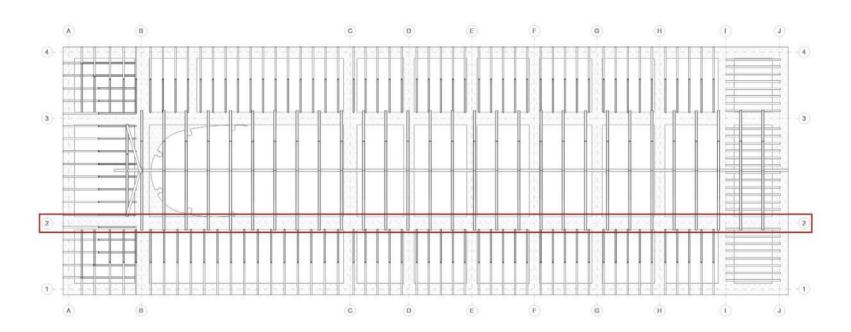
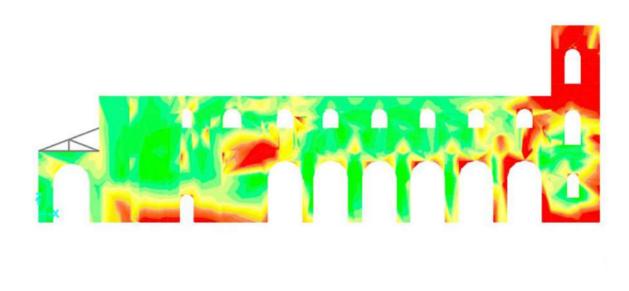


Figura 91: Distribución espacial del eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil


Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	120,00	[cm]] Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	12.000,00	[cm ²]	Área efectiva de la sección de mampostería	
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	

Tabla 72: Características de los materiales y geometría del eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Demanda/ Capacidad 0% 50% 100%

Figura 92: Diagrama de esfuerzo a tracción eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	60,96	[kgf/cm ²]	Esfuerzo a tracción último
D/C	8,73	No cumple	

Tabla 73: Esfuerzos admisibles para tracción axial del eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

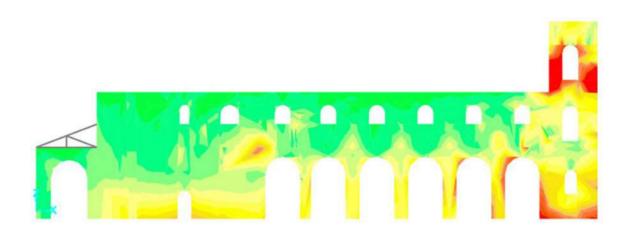


Figura 93: Diagrama de esfuerzo a compresión eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,88	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	25,27	[kgf/cm ²]	Resistencia nominal a compresión
fa u	73,80	[kgf/cm²]	Esfuerzo a compresión último
D/C	2,92	No cumple	

Tabla 74: Esfuerzos admisibles para compresión axial del eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

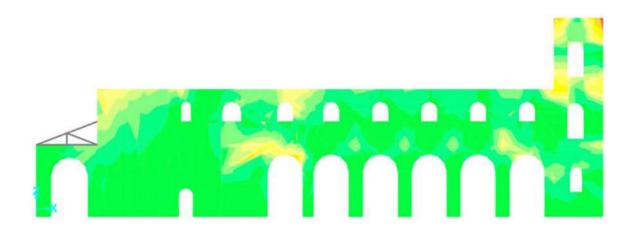


Figura 94: Diagrama de esfuerzo a cortante eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

		•	
V	3,12	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	0,98	Ok	

Tabla 75: Esfuerzos admisibles para cortante del eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

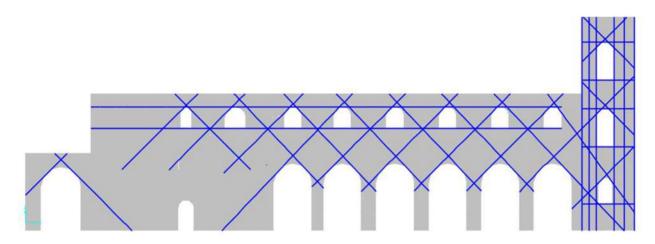


Figura 95: Esquema de reforzamiento interno eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

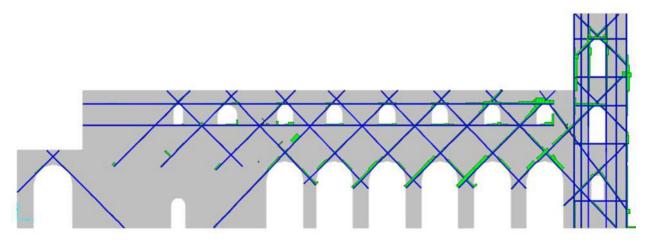


Figura 96: Fuerzas axiales en elementos de reforzamiento eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

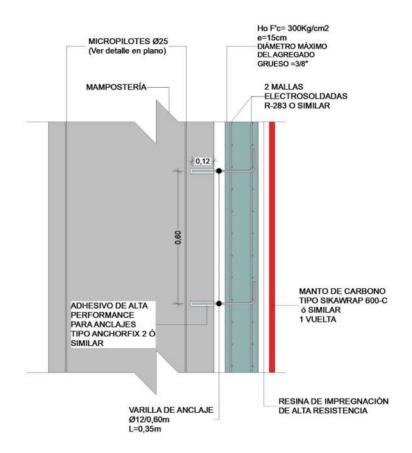


Figura 97: Esquema de reforzamiento externo eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	120,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	12.000,00	[cm ²]	Área efectiva de la sección de mampostería
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón
е	15,00	[cm]	Espesor de la capa de hormigón
fr	270,00	[kgf/cm]	Resistencia a la tracción
Er	2.420.000,00	[kgf/cm ²]	Módulo de elasticidad de la Fibra
er	1,40	[mm]	Espesor de la capa de fibra de carbono

Tabla 76: Características de los materiales y geometría de la sección compuesta propuesta para el eje 2 Elaboración: Departamento de Consultoría Técnica - UDA Civil

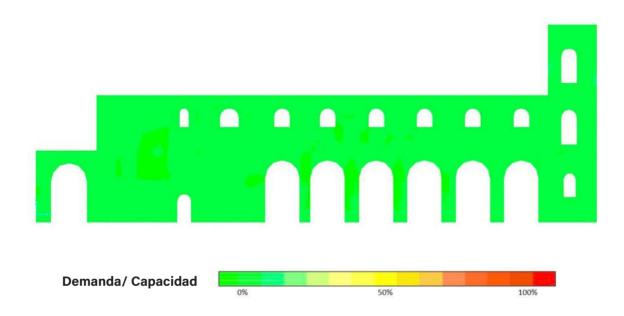


Figura 98: Diagrama de esfuerzo a tracción eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	90,38	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,08	ok	

Tabla 77: Esfuerzos admisibles para tracción axial del eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

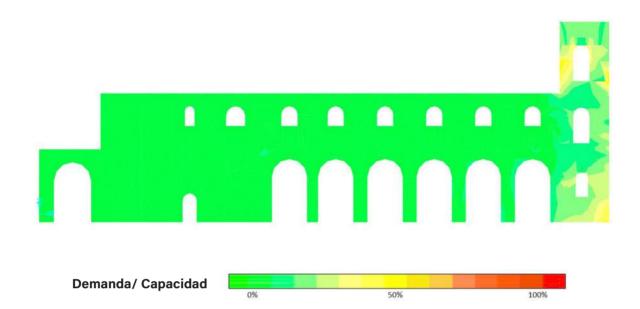


Figura 99: Diagrama de esfuerzo a compresión eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

Re	0,88	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φ fa	25,27	[kgf/cm²]	Resistencia nominal a compresión de la mampostería
φ f'c	195,00	[kgf/cm ²]	Resistencia nominal a compresión del hormigón
φС	220,27	[kgf/cm ²]	Resistencia nominal a compresión de la sección
fa u	125,80	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,57	Ok	

Tabla 78: Esfuerzos admisibles para compresión axial del eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

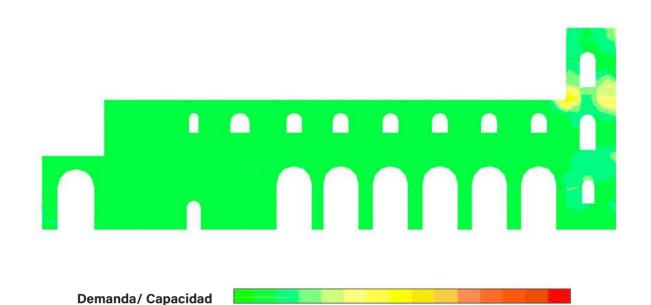


Figura 100: Diagrama de esfuerzo a cortante eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

50%

100%

Estuerzo admisible para cortante en muros de la sección compuesta					
V	12,36	[kgf/cm ²]	Cortante último		
фVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante de la mampostería		
ф Ус	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón		
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero		
Ф	6,00	[mm]	Diámetro del acero de refuerzo		
S	10,00	[cm]	Separación entre acero de refuerzo		
n	10,00	[-]	Número de varillas por metro lineal		
Av	0,28	[cm ²]	Área de cortante		
Nm	2,00	[-]	Número de mallas electrosoldadas		
φVs	11,88	[kgf/cm ²]	Resistencia nominal a cortante del acero de refuerzo		
φV	21,94	[kgf/cm ²]	Resistencia nominal a cortante de la sección		
D/C	0,56	Ok			

Tabla 79: Esfuerzos admisibles para cortante del eje 2 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.13 EJE 3

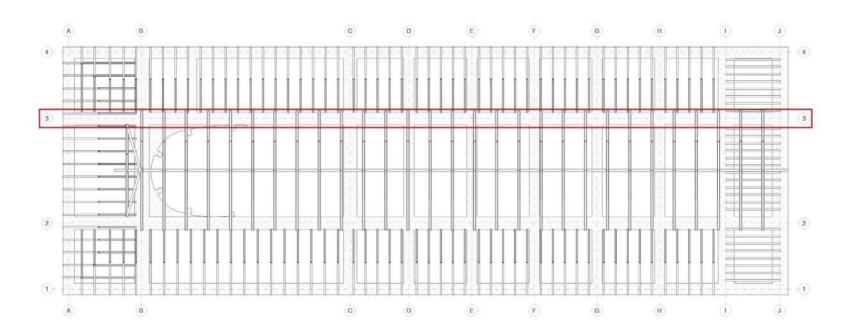


Figura 101: Distribución espacial del eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	120,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	12.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 80: Características de los materiales y geometría del eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

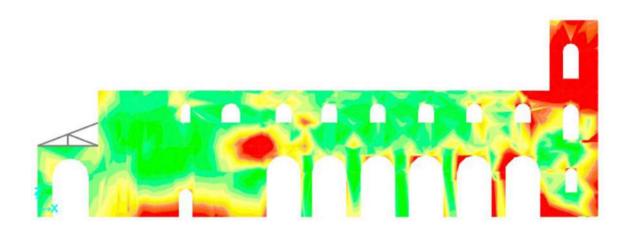


Figura 102: Diagrama de esfuerzo a tracción eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	49,05	[kgf/cm ²]	Esfuerzo a tracción último
D/C	7,02	No cumple	

Tabla 81: Esfuerzos admisibles para tracción axial del eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

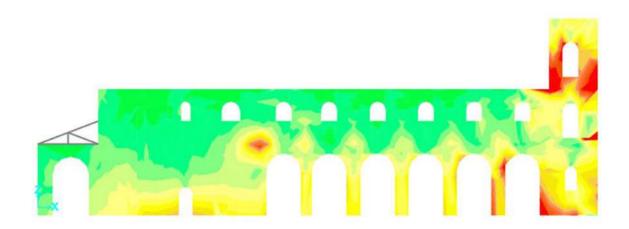


Figura 103: Diagrama de esfuerzo a compresión eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,88	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	25,27	[kgf/cm ²]	Resistencia nominal a compresión
fa u	43,75	[kgf/cm ²]	Esfuerzo a compresión último
D/C	1,73	No cumple	

Tabla 82: Esfuerzos admisibles para compresión axial del eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

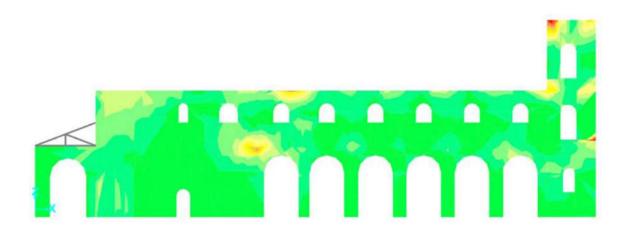


Figura 104: Diagrama de esfuerzo a cortante eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

V	3,41	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	1,07	No cumple	

Tabla 83: Esfuerzos admisibles para cortante del eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

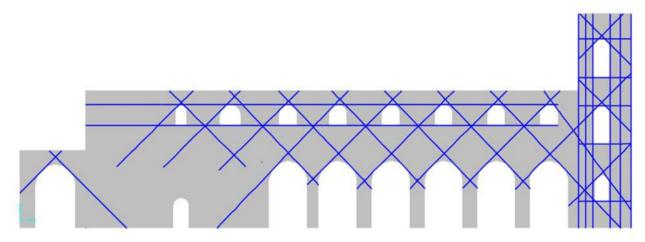


Figura 105: Esquema de reforzamiento interno eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

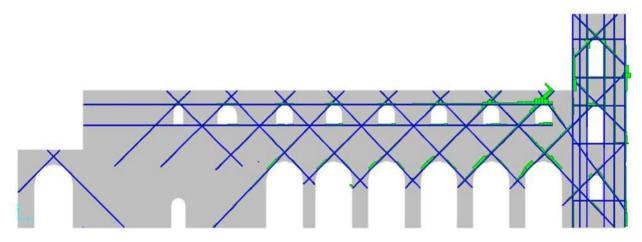


Figura 106: Fuerzas axiales en elementos de reforzamiento eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

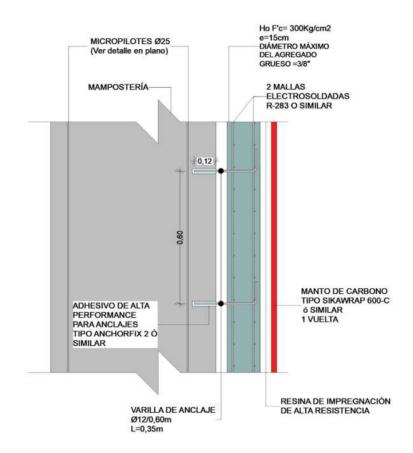


Figura 107: Esquema de reforzamiento externo eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	120,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	12.000,00	[cm ²]	Área efectiva de la sección de mampostería
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón
е	15,00	[cm]	Espesor de la capa de hormigón
fr	270,00	[kgf/cm]	Resistencia a la tracción
Er	2.420.000,00	[kgf/cm ²]	Módulo de elasticidad de la Fibra
er	1,40	[mm]	Espesor de la capa de fibra de carbono

Tabla 84: Características de los materiales y geometría de la sección compuesta propuesta para el eje 3 Elaboración: Departamento de Consultoría Técnica - UDA Civil

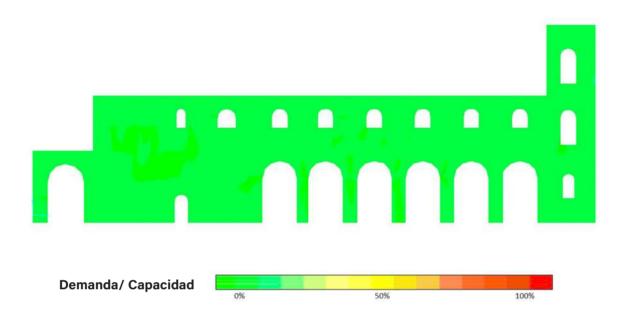


Figura 108: Diagrama de esfuerzo a tracción eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	116,62	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,10	ok	

Tabla 85: Esfuerzos admisibles para tracción axial del eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

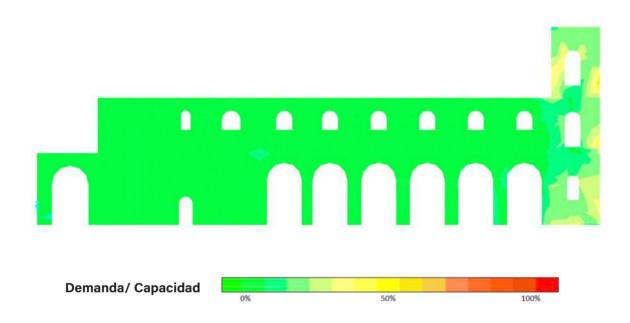
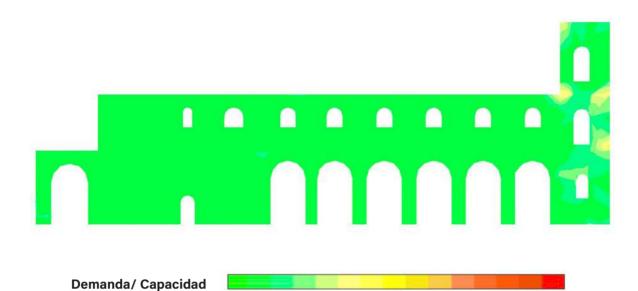


Figura 109: Diagrama de esfuerzo a compresión eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil


Esfuerzos admisibles para compresión axial de la sección compuesta

Re	0,88	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φ fa	25,27	[kgf/cm ²]	Resistencia nominal a compresión de la mampostería
φf'c	195,00	[kgf/cm²]	Resistencia nominal a compresión del hormigón
φС	220,27	[kgf/cm ²]	Resistencia nominal a compresión de la sección
fa u	142,97	[kgf/cm²]	Esfuerzo a compresión último
D/C	0,65	Ok	

Tabla 86: Esfuerzos admisibles para compresión axial del eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

0% 50%

Figura 110: Diagrama de esfuerzo a cortante eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible	nara cortante en	murne de la se	cción compuesta
ESTUELZO AUTITISTOR	s vara cortaine en	munus de la se	ccion compuesia

Estuerzo admisible para cortante en muros de la sección compuesta				
V	10,06	[kgf/cm ²]	Cortante último	
φVm	3,17	[kgf/cm²]	Resistencia nominal a cortante de la mampostería	
ф Ус	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón	
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero	
Ф	6,00	[mm]	Diámetro del acero de refuerzo	
S	10,00	[cm]	Separación entre acero de refuerzo	
n	10,00	[-]	Número de varillas por metro lineal	
Av	0,28	[cm ²]	Área de cortante	
Nm	2,00	[-]	Número de mallas electrosoldadas	
φVs	11,88	[kgf/cm²]	Resistencia nominal a cortante del acero de refuerzo	
φV	21,94	[kgf/cm²]	Resistencia nominal a cortante de la sección	
D/C	0,46	Ok		

Tabla 87: Esfuerzos admisibles para cortante del eje 3 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

100%

7.2.14 EJE 4

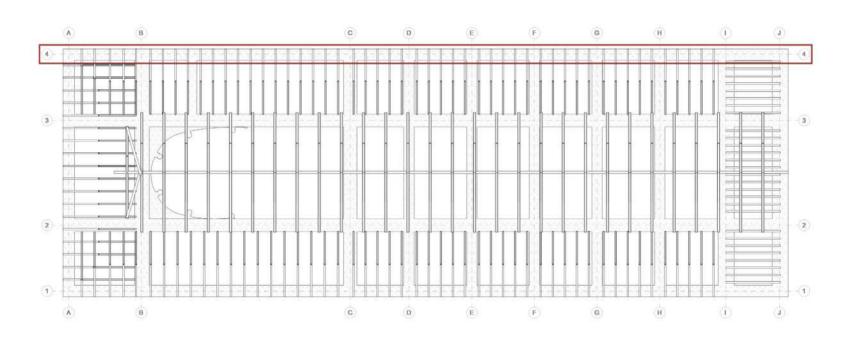


Figura 111: Distribución espacial del eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería	
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería	
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería	
b	100,00	[cm]	Longitud de mampostería analizada	
t	108,00	[cm]	Espesor de la mampostería	
h	23,36	[m]	Altura efectiva del elemento	
Ae	10.800,00	[cm²]	Área efectiva de la sección de mampostería	

Tabla 88: Características de los materiales y geometría del eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

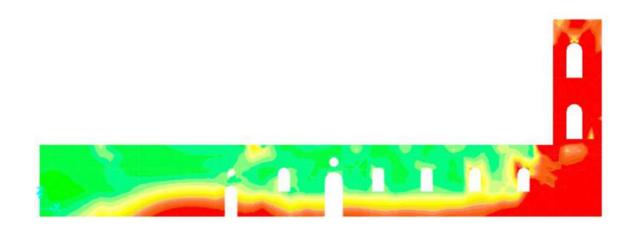


Figura 112: Diagrama de esfuerzo a tracción eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	29,31	[kgf/cm ²]	Esfuerzo a tracción último
D/C	4,20	No cumple	

Tabla 89: Esfuerzos admisibles para tracción axial del eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

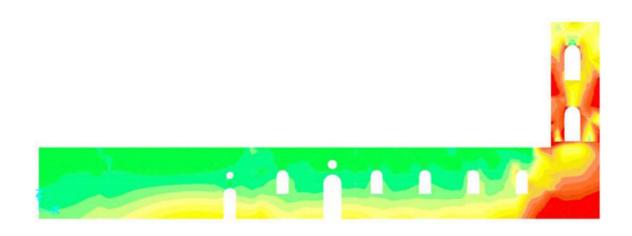


Figura 113: Diagrama de esfuerzo a compresión eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,84	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	24,04	[kgf/cm ²]	Resistencia nominal a compresión
fa u	38,71	[kgf/cm ²]	Esfuerzo a compresión último
D/C	1,61	No cumple	

Tabla 90: Esfuerzos admisibles para compresión axial del eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Figura 114: Diagrama de esfuerzo a cortante eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

V	3,48	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante
D/C	1,10	No cumple	

Tabla 91: Esfuerzos admisibles para cortante del eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Figura 115: Esquema de reforzamiento interno eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

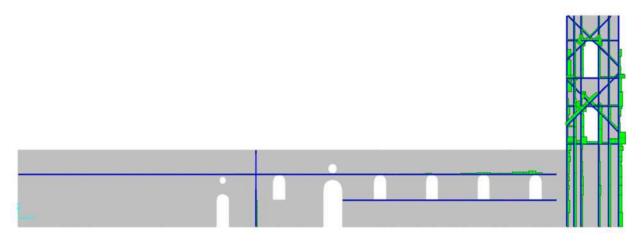


Figura 116: Fuerzas axiales en elementos de reforzamiento eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

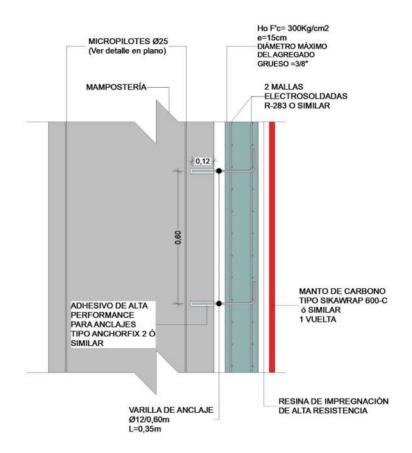


Figura 117: Esquema de reforzamiento externo eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

	Garactoriotic	ao ao ioo iiiatoi	iaioo ao la coccion compaccia
f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	108,00	[cm]	Espesor de la mampostería
h	23,36	[m]	Altura efectiva del elemento
Ae	10.800,00	[cm ²]	Área efectiva de la sección de mampostería
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón
е	15,00	[cm]	Espesor de la capa de hormigón
fr	270,00	[kgf/cm]	Resistencia a la tracción
Er	2.420.000,00	[kgf/cm ²]	Módulo de elasticidad de la Fibra
er	1,40	[mm]	Espesor de la capa de fibra de carbono

Tabla 92: Características de los materiales y geometría de la sección compuesta propuesta para el eje 4 Elaboración: Departamento de Consultoría Técnica - UDA Civil

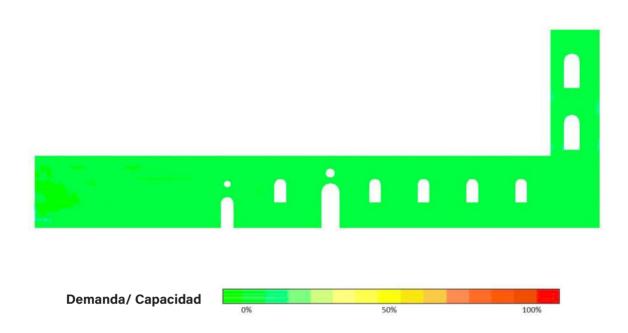


Figura 118: Diagrama de esfuerzo a tracción eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	88,48	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,08	ok	

Tabla 93: Esfuerzos admisibles para tracción axial del eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

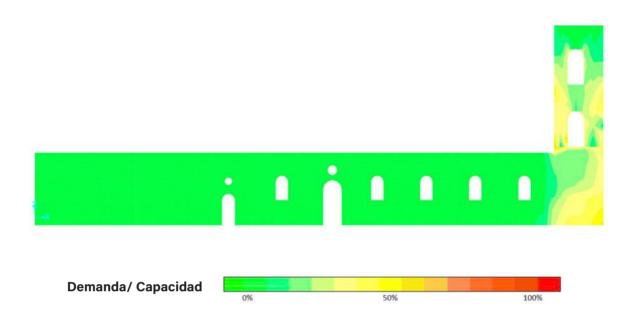


Figura 119: Diagrama de esfuerzo a compresión eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

Re	0,84	[-]	Coeficiente de reducción por esbeltez para mampostería			
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería			
φ fa	24,04	[kgf/cm ²]	Resistencia nominal a compresión de la mampostería			
φ f'c	195,00	[kgf/cm ²]	Resistencia nominal a compresión del hormigón			
φС	219,04	[kgf/cm ²]	Resistencia nominal a compresión de la sección			
fa u	144,34	[kgf/cm ²]	Esfuerzo a compresión último			
D/C	0,66	Ok				

Tabla 94: Esfuerzos admisibles para compresión axial del eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

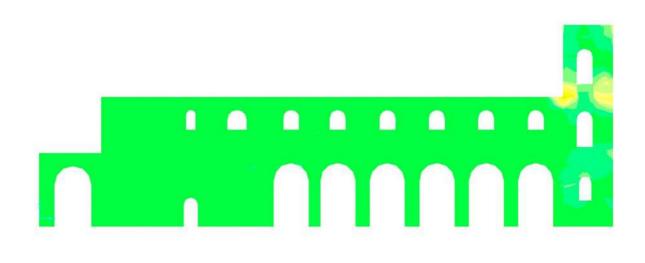


Figura 120: Diagrama de esfuerzo a cortante eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

	Estuerzo admisible para cortante en muros de la sección compuesta				
V	13,42	[kgf/cm ²]	Cortante último		
φVm	3,17	[kgf/cm²]	Resistencia nominal a cortante de la mampostería		
фVc	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón		
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero		
Φ	6,00	[mm]	Diámetro del acero de refuerzo		
S	10,00	[cm]	Separación entre acero de refuerzo		
n	10,00	[-]	Número de varillas por metro lineal		
Av	0,28	[cm ²]	Área de cortante		
Nm	2,00	[-]	Número de mallas electrosoldadas		
φVs	11,88	[kgf/cm ²]	Resistencia nominal a cortante del acero de refuerzo		
φV	21,94	[kgf/cm²]	Resistencia nominal a cortante de la sección		
D/C	0,61	Ok			

Tabla 95: Esfuerzos admisibles para cortante del eje 4 (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.2.15 CÚPULAS

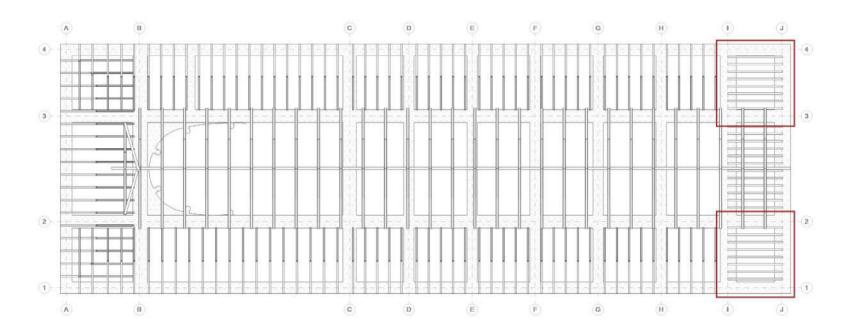


Figura 121: Distribución espacial de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	30,00	[cm]	Espesor de la mampostería
h	6,72	[m]	Altura efectiva del elemento
Ae	3.000,00	[cm²]	Área efectiva de la sección de mampostería

Tabla 96: Características de los materiales y geometría de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Figura 122: Diagrama de esfuerzo a tracción de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial

fr	6,98	[kgf/cm ²]	Resistencia nominal a tensión
fr u	32,93	[kgf/cm ²]	Esfuerzo a tracción último
D/C	4,71	No cumple	

Tabla 97: Esfuerzos admisibles para tracción axial de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

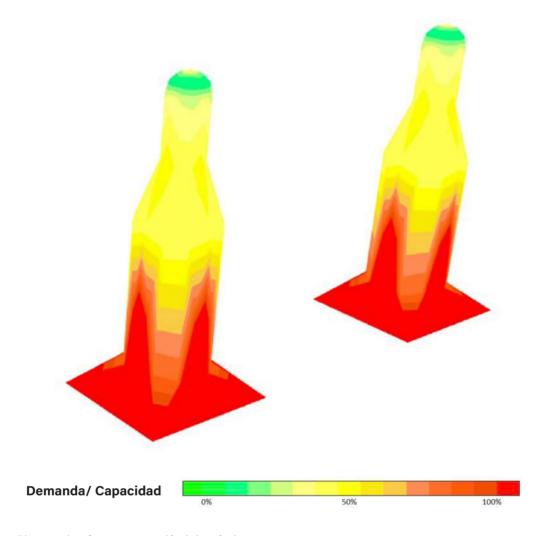


Figura 123: Diagrama de esfuerzo a compresión de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial

Re	0,82	[-]	Coeficiente de reducción por esbeltez
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica
φ fa	23,54	[kgf/cm ²]	Resistencia nominal a compresión
fa u	43,04	[kgf/cm ²]	Esfuerzo a compresión último
D/C	1,83	No cumple	

Tabla 98: Esfuerzos admisibles para compresión axial de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

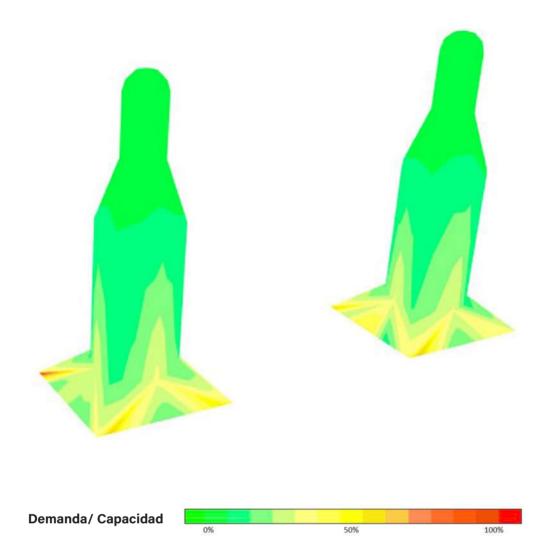


Figura 124: Diagrama de esfuerzo a cortante de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros

V	2,75	[kgf/cm ²]	Cortante último
φVm	3,17	[kgf/cm ²]	Resistencia nominal a la compresión
D/C	0,87	Ok	

Tabla 99: Esfuerzos admisibles para cortante de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

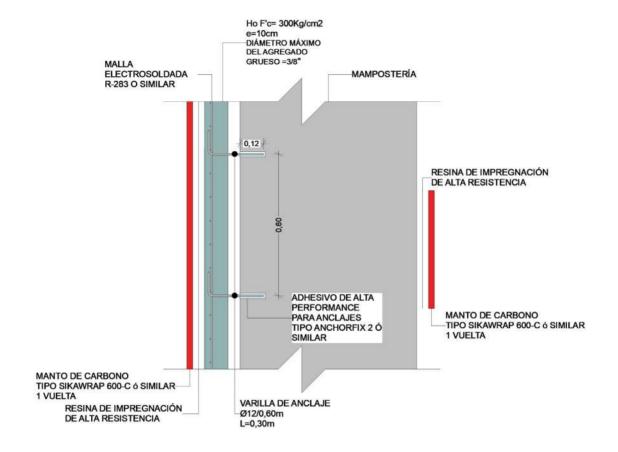


Figura 125: Esquema de reforzamiento externo de las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

Características de los materiales de la sección compuesta

f'm	70,00	[kgf/cm ²]	Resistencia a la compresión de la mampostería
Em	52.500,00	[kgf/cm ²]	Módulo de elasticidad de la mampostería
Gm	21.000,00	[kgf/cm ²]	Módulo de cortante de la mampostería
b	100,00	[cm]	Longitud de mampostería analizada
t	30,00	[cm]	Espesor de la mampostería
h	6,72	[m]	Altura efectiva del elemento
Ae	3.000,00	[cm ²]	Área efectiva de la sección de mampostería
f'c	300,00	[kgf/cm ²]	Resistencia a la compresión del hormigón
Ec	261.539,67	[kgf/cm ²]	Módulo de elasticidad del hormigón
е	10,00	[cm]	Espesor de la capa de hormigón
fr	270,00	[kgf/cm]	Resistencia a la tracción
Er	2.420.000,00	[kgf/cm²]	Módulo de elasticidad de la Fibra
er	1,40	[mm]	Espesor de la capa de fibra de carbono

Tabla 100: Características de los materiales y geometría de la sección compuesta propuesta para las cúpulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

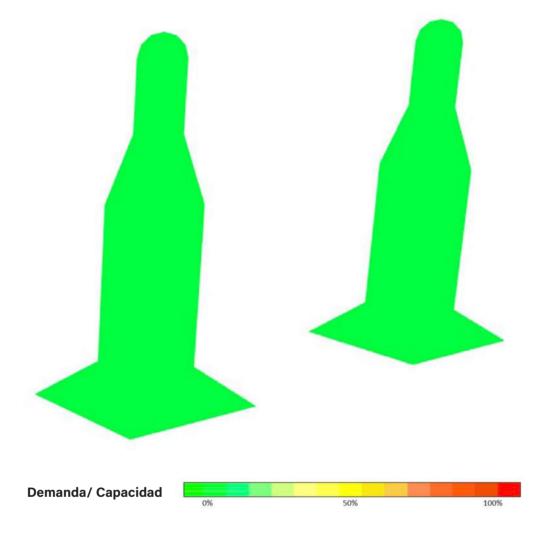


Figura 126: Diagrama de esfuerzo a tracción de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para tracción axial de la sección compuesta

fr	1.157,14	[kgf/cm ²]	Resistencia nominal a tensión
fr u	39,17	[kgf/cm ²]	Esfuerzo a tracción último
D/C	0,03	ok	

Tabla 101: Esfuerzos admisibles para tracción axial de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

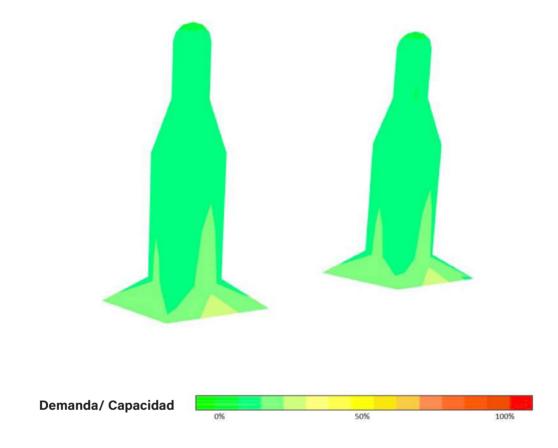


Figura 127: Diagrama de esfuerzo a compresión de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzos admisibles para compresión axial de la sección compuesta

		•	•
Re	0,82	[-]	Coeficiente de reducción por esbeltez para mampostería
fa	59,50	[kgf/cm ²]	Máxima resistencia axial teórica de la mampostería
φ fa	23,54	[kgf/cm²]	Resistencia nominal a compresión de la mampostería
φ f'c	195,00	[kgf/cm ²]	Resistencia nominal a compresión del hormigón
	218,54	[kgf/cm ²]	Resistencia nominal a compresión de la sección
φC fa u	61,58	[kgf/cm ²]	Esfuerzo a compresión último
D/C	0,28	Ok	

Tabla 102: Esfuerzos admisibles para compresión axial de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

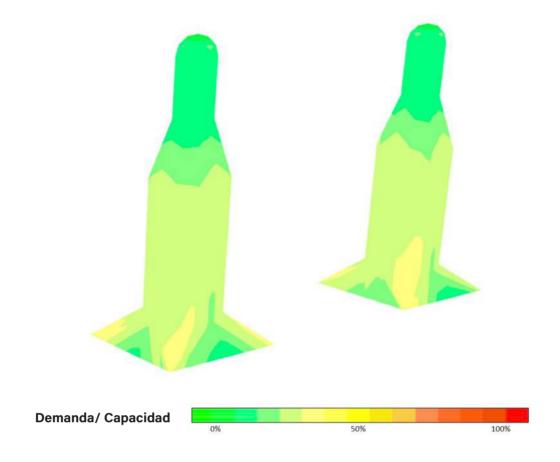


Figura 128: Diagrama de esfuerzo a cortante de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

Esfuerzo admisible para cortante en muros de la sección compuesta

Estuerzo admisible para cortante en muros de la sección compuesta							
V	8,69	[kgf/cm ²]	Cortante último				
фVm	3,17	[kgf/cm ²]	Resistencia nominal a cortante de la mampostería				
ф Ус	6,88	[kgf/cm ²]	Resistencia nominal a cortante del hormigón				
Fy	4.200,00	[kgf/cm ²]	Límite de fluencia del acero				
Ф	6,00	[mm]	Diámetro del acero de refuerzo				
S	10,00	[cm]	Separación entre acero de refuerzo				
n	10,00	[-]	Número de varillas por metro lineal				
Av	0,28	[cm ²]	Área de cortante				
Nm	1,00	[-]	Número de mallas electrosoldadas				
фVs	8,91	[kgf/cm²]	Resistencia nominal a cortante del acero de refuerzo				
φV	18,97	[kgf/cm²]	Resistencia nominal a cortante de la sección				
D/C	0,46	Ok					

Tabla 103: Esfuerzos admisibles para cortante de las cúpulas (sección compuesta) Elaboración: Departamento de Consultoría Técnica - UDA Civil

7.3 Comparación del comportamiento de la estructura previo y posterior al reforzamiento.

En el presente capítulo se presenta una comparativa gráfica entre el estado actual y posterior al reforzamiento tanto del eje I como de las cúpulas, con la finalidad de ejemplificar los resultados obtenidos en este estudio.

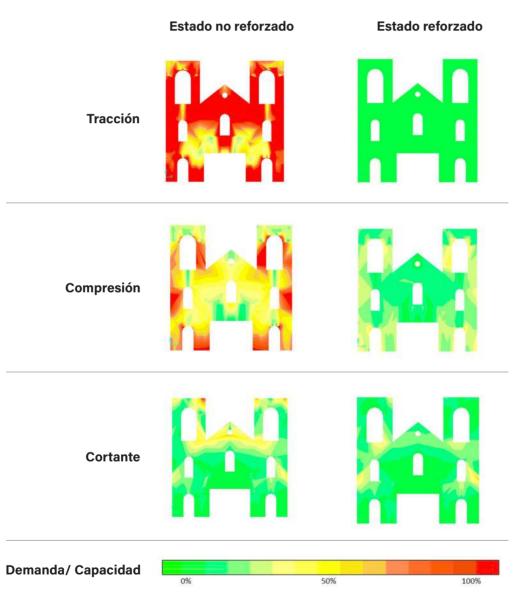


Tabla 104: Comparación del estado actual vs posterior al reforzamiento del eje l Elaboración: Departamento de Consultoría Técnica - UDA Civil

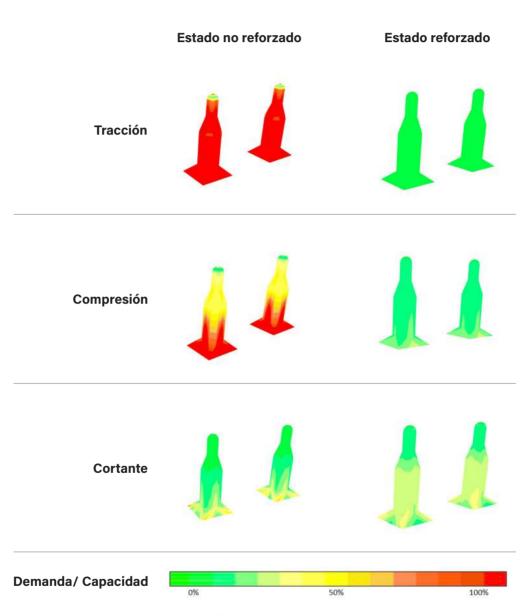


Tabla 105: Comparación del estado actual vs posterior al reforzamiento de las cupulas Elaboración: Departamento de Consultoría Técnica - UDA Civil

CONCLUSIONES

El sismo del 18 de marzo de 2023, localizado frente a la costa de Balao en la provincia de El Oro - Ecuador (2°51′04″ S – 79°48′ 00″ O), de 68 Mw de magnitud, ubicado a 68 Km de profundidad, con una intensidad MMI de VII, y que fue sentido en 14 de las 24 provincias del Ecuador, incluida la provincia del Azuay, causó un daño significativamente irreversible en buena parte del templo de Santo Domingo, perteneciente al convento del Santísimo Rosario de la ciudad de Cuenca. Los daños estructurales se evidenciaron a través de fisuras y agrietamientos en buena parte de los elementos de la edificación, incluso se pudo evidenciar desplomes en muros de mampostería y ciertas columnas reflejando que las fuerzas (cargas) originadas por el sismo, confluyeron en los puntos de mayor concentración de esfuerzos, que coinciden con los puntos analizados a través del software especializado aplicado dentro de la modelación estructural realizada.

Para el análisis, la estructura en su conjunto fue evaluada para todos los valores de carga de acción y combinación, tal cual las normas establecidas por la NEC, para garantizar los estados de resistencia admisibles, según el capítulo de riesgo sísmico. El análisis técnico concluyó que determinados elementos estructurales de la edificación, no satisfacen los requerimientos de demanda de seguridad, razón por la cual deben ser intervenidos con procesos de reforzamiento, los cuales han sido desarrollados y propuestos en el presente estudio estructural.

El presupuesto referencial par el reforzamiento estructural de la iglesia de Santo Domingo se estima en aproximadamente US \$ 4'130.000.

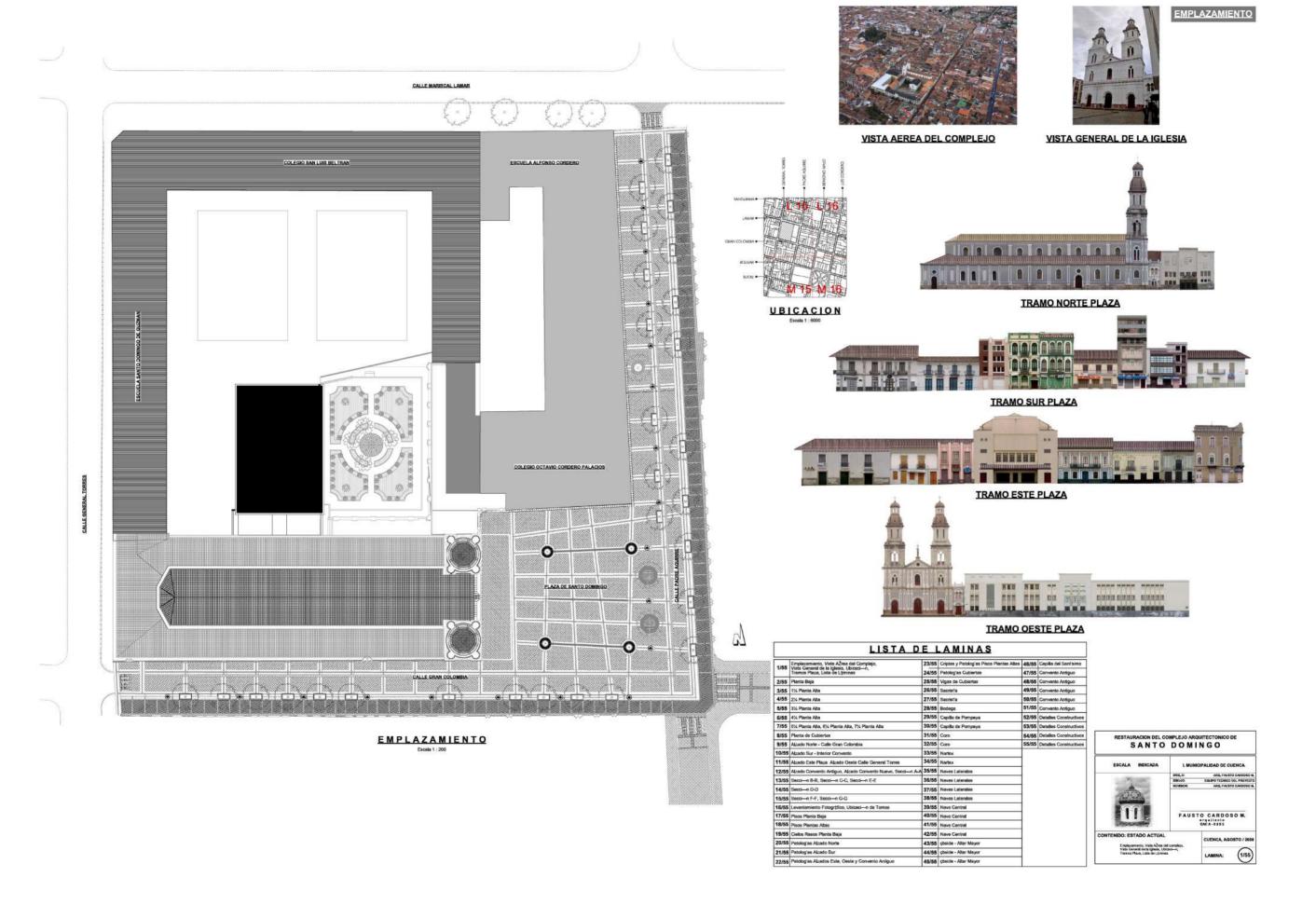
RECOMENDACIONES

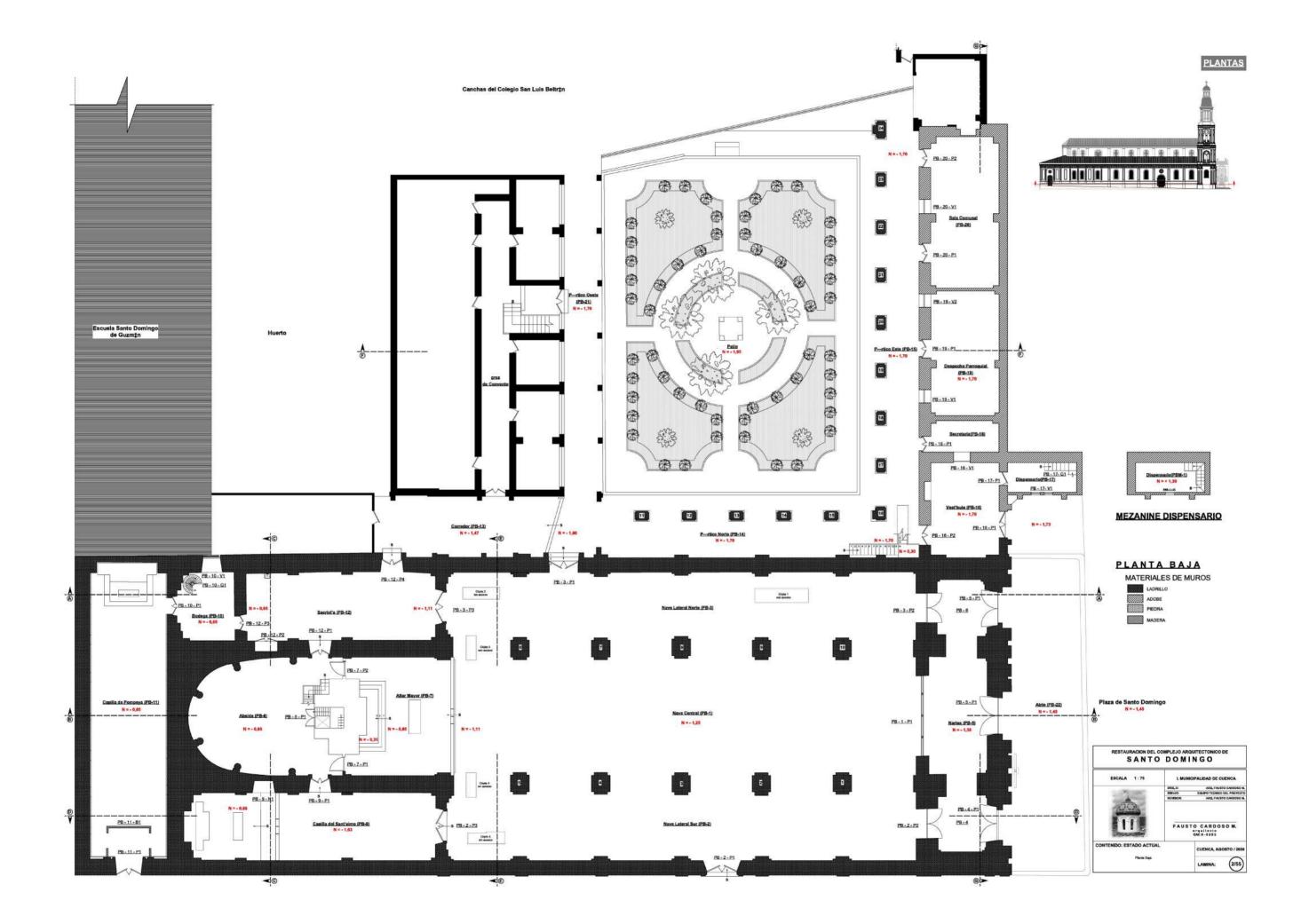
La iglesia de Santo Domingo de la ciudad de Cuenca- Ecuador, es una edificación inventariada dentro del patrimonio local, nacional y de la humanidad, cuya construcción data de principios del siglo XX, considerada única por su arquitectura y valor histórico, constituyéndose no solo en un bien patrimonial sino en parte misma de la memoria histórica de la capital azuaya. Por lo tanto, como se mencionó, gran parte de la estructura actual de la iglesia de Santo Domingo se encuentra afectada en cuanto a su resistencia, lo cual pone en evidente riesgo la permanencia del edificio en el tiempo, así como a la seguridad de sus fieles usuarios. Esto convierte en prioritaria toda acción que vaya dirigida a defender y cuidar la prevalencia de este bien patrimonial muy preciado por la ciudadanía y su entorno cultural.

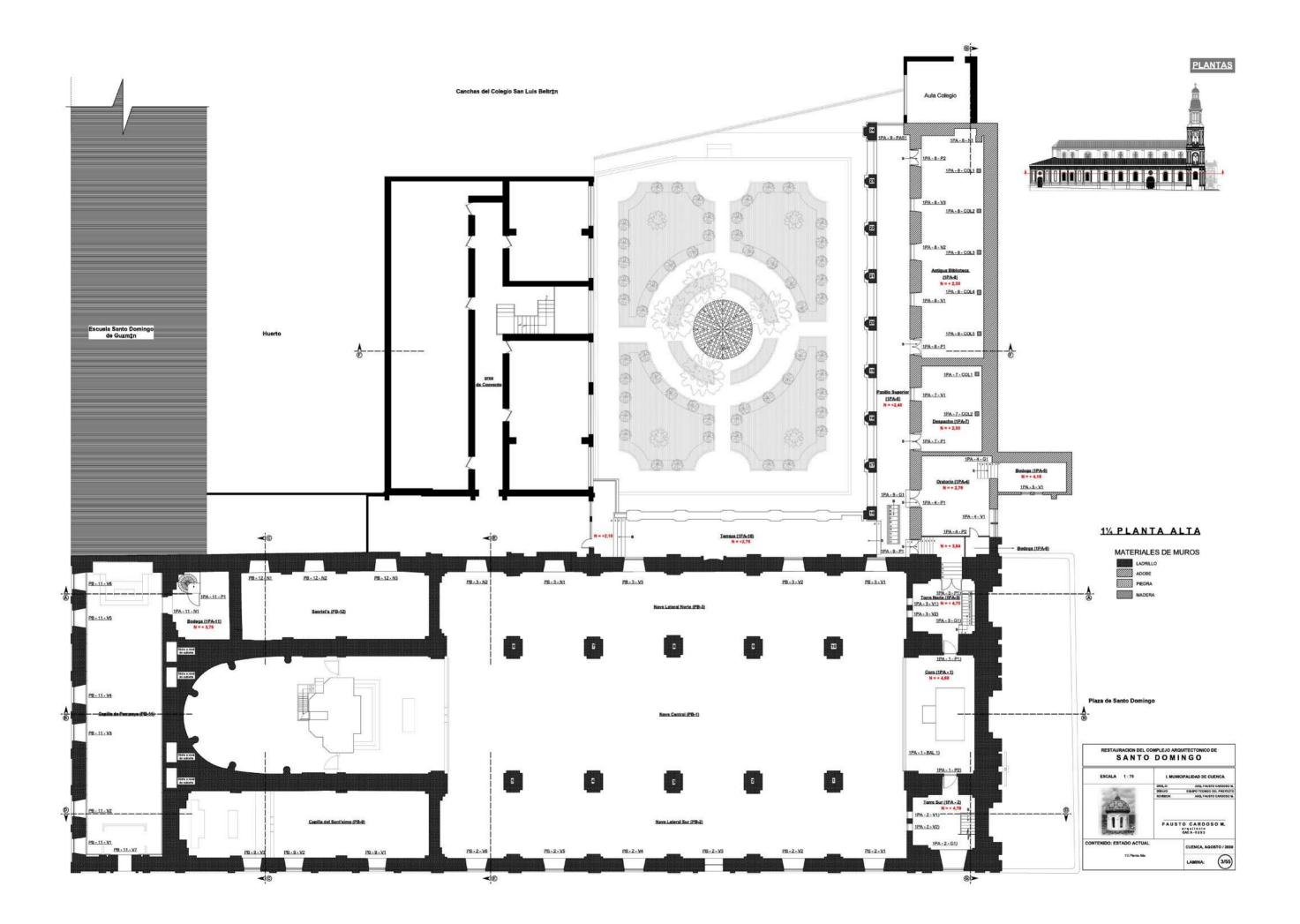
Por lo tanto, la recomendación principal es que los directivos del convento, las autoridades del gobierno local y las autoridades de la Secretaría Nacional de Patrimonio Cultural, se propongan realizar todos los esfuerzos necesarios, con el fin de lograr la recuperación del templo, a través de realizar los trabajos de reforzamiento estructural aquí propuestos y así precautelar la permanencia de este preciado bien patrimonial en el tiempo.

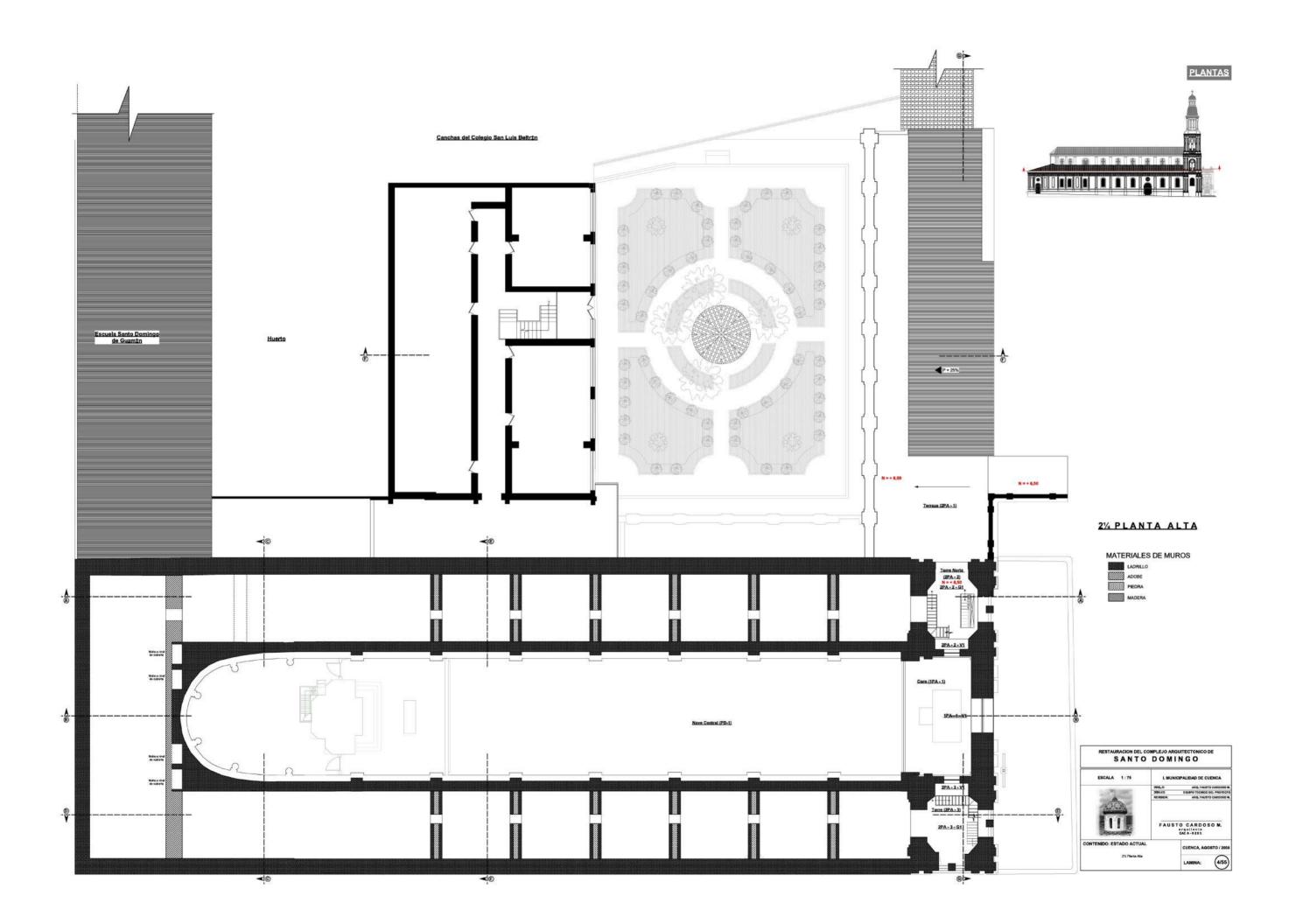
De igual manera, durante el proceso de ejecución del reforzamiento se recomienda tener presente los siguientes aspectos:

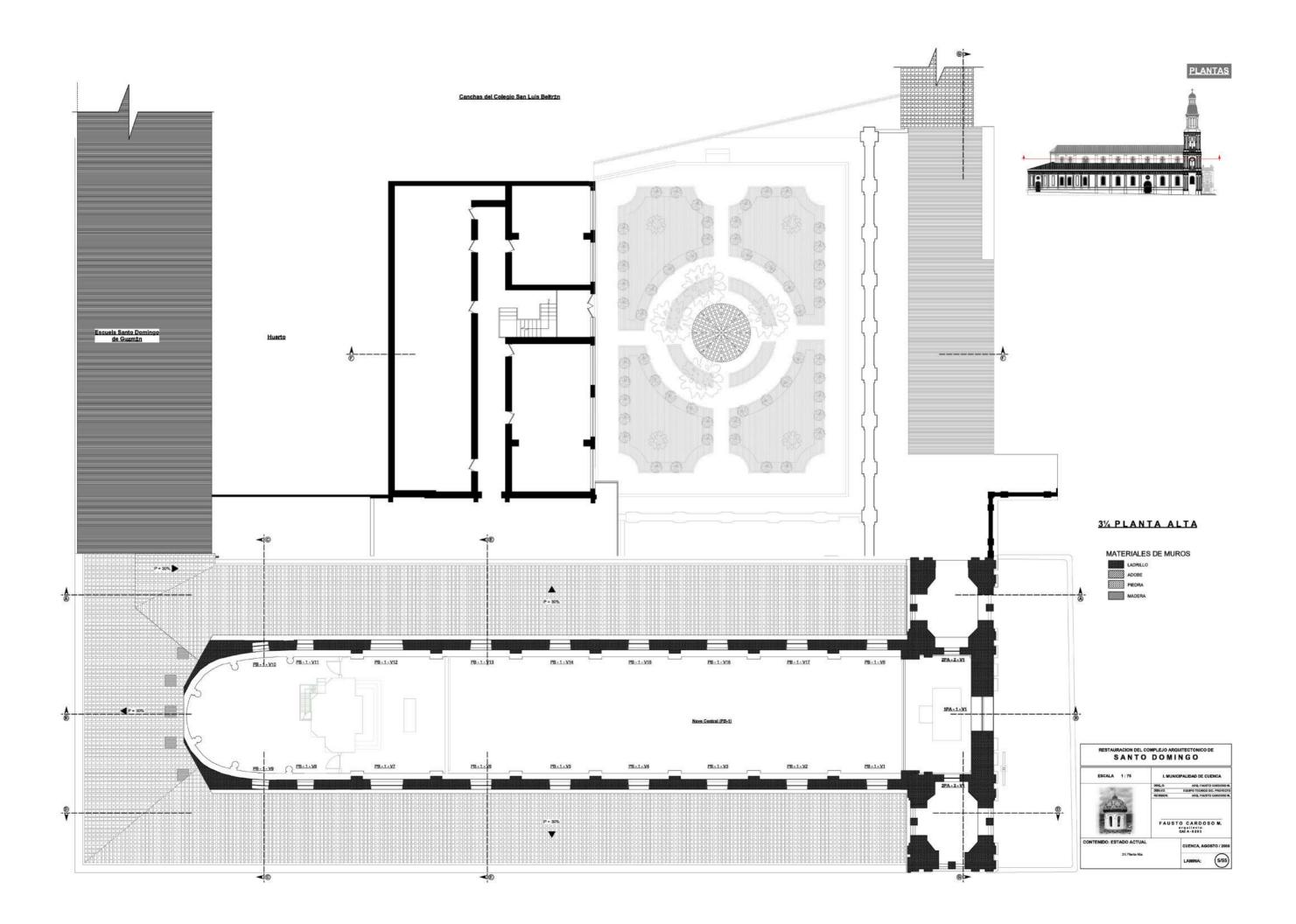
- Realizar un monitoreo continuo al momento de ejecutar las perforaciones para los micropilotes y tensores anclados. La intervención se realizará de manera simétrica, es decir el interventor deberá presentar un plan de reforzamiento cronológico que no genere desbalance en la generalidad del edificio.
- Realizar veladuras y utilizar soportes acolchados para disminuir el riesgo de afectación al patrimonio existente en la iglesia, mientras se realice el proceso constructivo de reparación.
- Únicamente se emplearán perforaciones rotacionales con refrigeración, mediante la utilización de flujo de aire (refrigerante).
- Durante la reconstrucción, deberá dejarse improntas del reforzamiento y la información de las intervenciones realizadas.
- La restauración de los elementos patrimoniales se deberá realizar mediante técnicas tradicionales utilizando materiales específicamente mejorados, de acuerdo a las recomendaciones de los expertos patrimoniales del área.

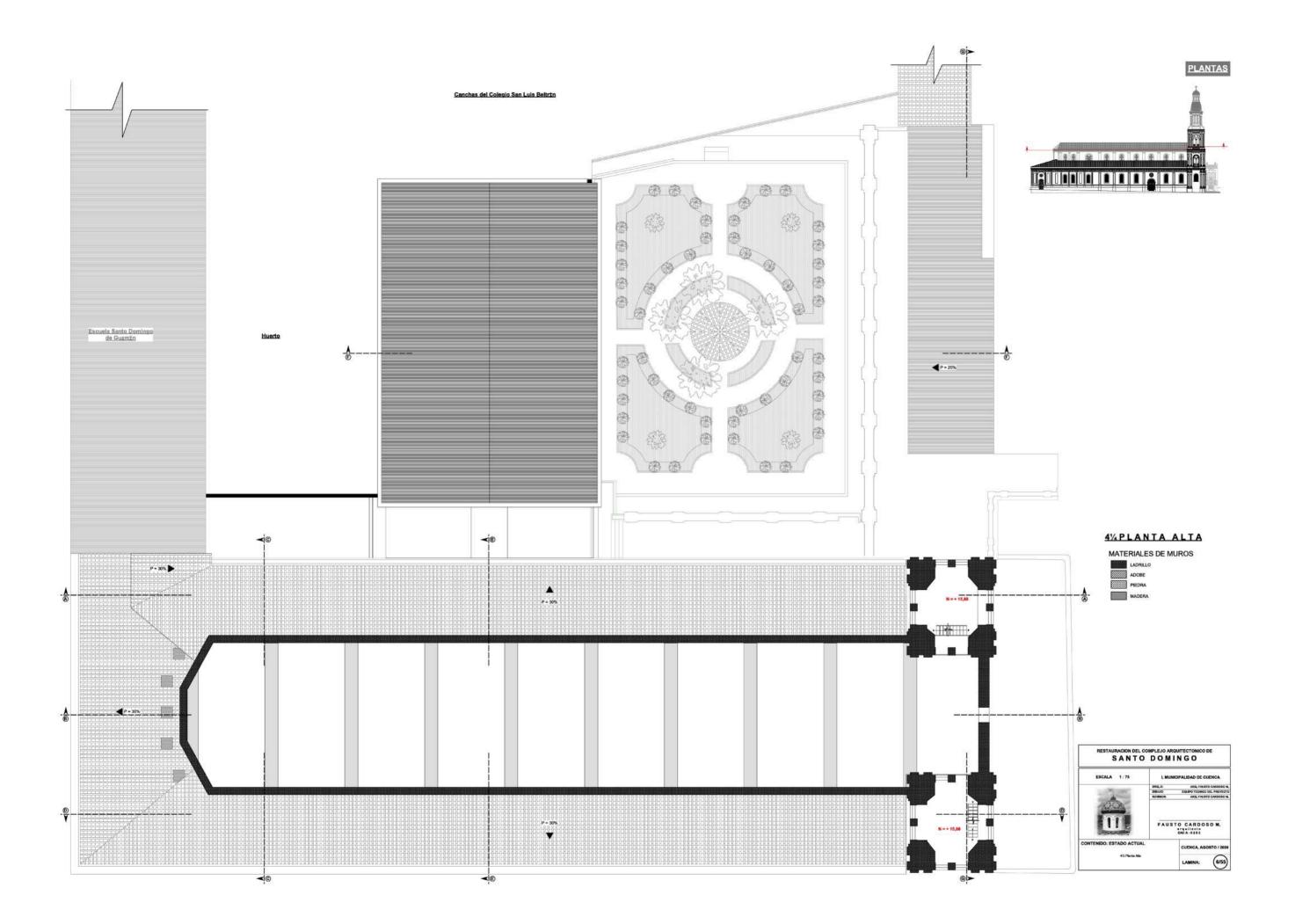

- En cuanto a los estudios complementarios que deberán realizarse de manera previa y en algunos casos paralela a la ejecución del reforzamiento, es preciso detallar los siguientes:
 - Evaluación patrimonial del templo.
 - Re-levantamiento fotográfico de las áreas a intervenir.
 - Prospecciones estratigráficas (calas de enlucido).
 - Levantamiento topográfico del templo, para verificación de dimensiones.
 - Exploración de la cimentación de la estructura principal del templo, para valorar y evaluar su estado actual.
 - Estudio de mecánica de suelos, a nivel de la cimentación subterránea.
 - Instrumentación de la estructura, con el fin de determinar períodos de vibración, modos de vibración y amortiguamiento de la estructura.
 - Estudio de peligro sísmico de la zona de implantación. Generación de espectros de sitio.

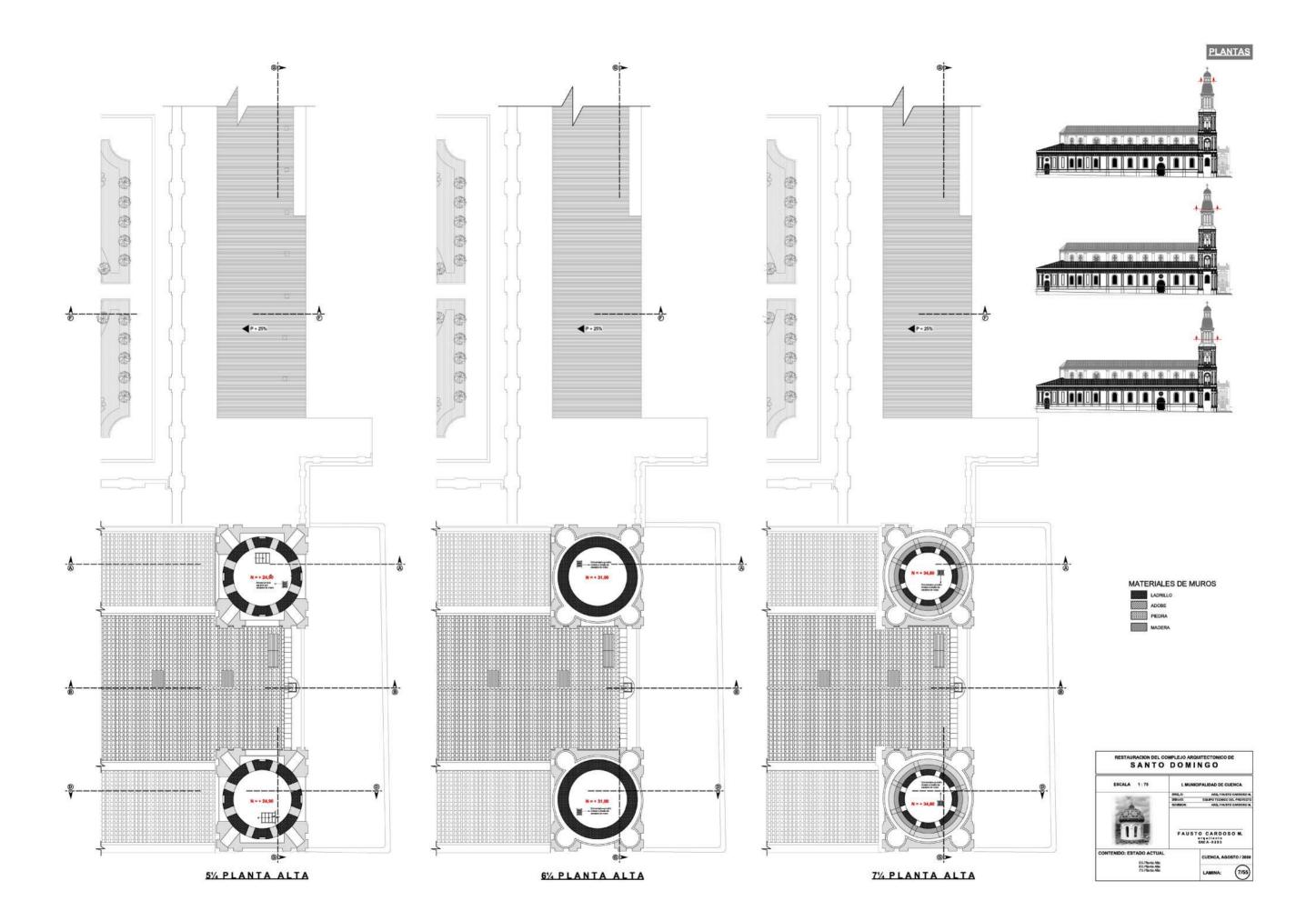

Es importante destacar, que el informe presentado es de tipo inicial, basado en la información entregada durante su desarrollo. Una vez ejecutados los estudios complementarios sugeridos, el informe de evaluación y rehabilitación estructural deberá ser actualizado, como requerimiento previo a la ejecución de la obra.

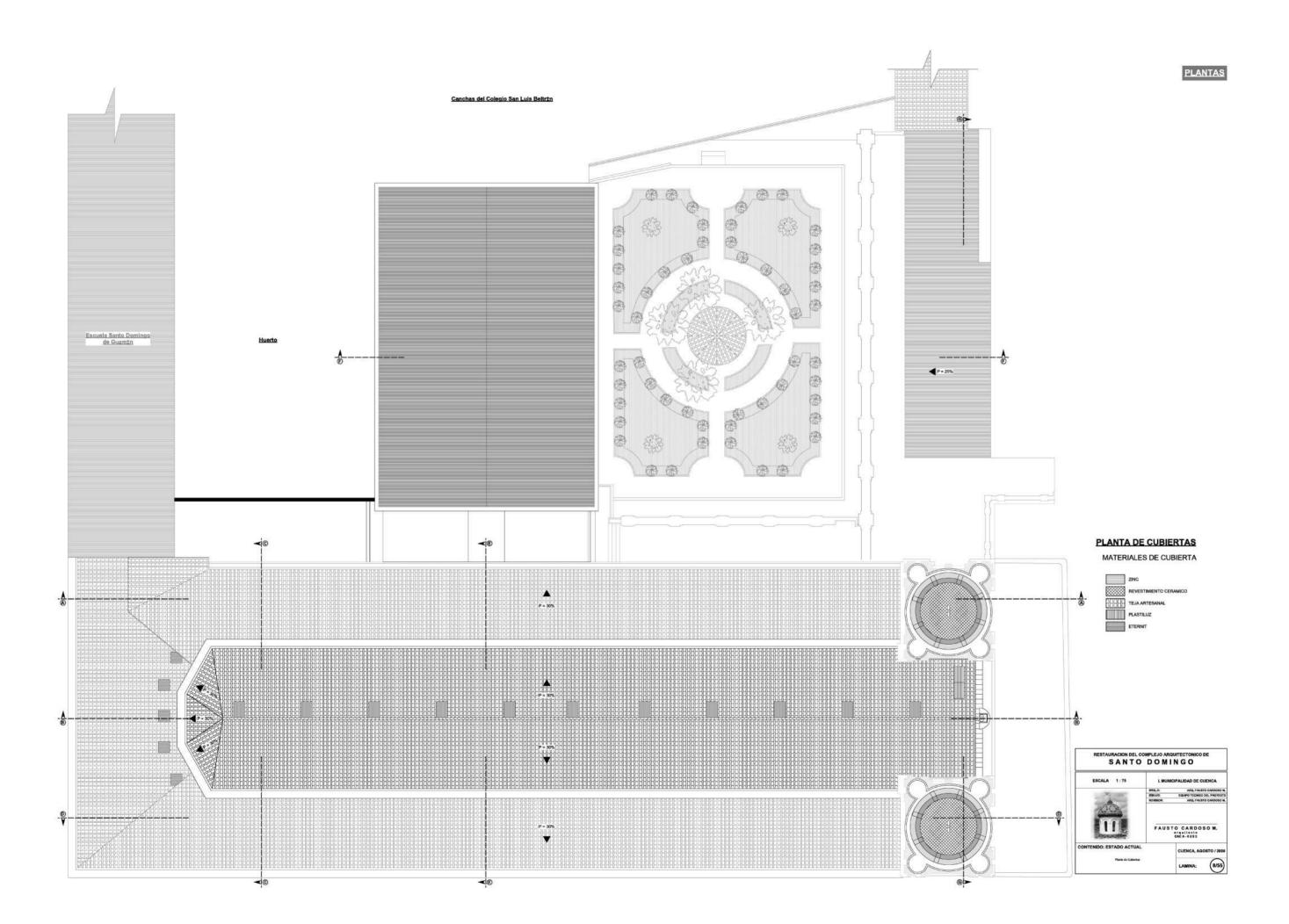

Una vez más se insiste en realizar una investigación longitudinal de las consecuencias que genera la construcción y circulación diaria del sistema tranviario, el cual produce fenómenos de vibración mecánica en la edificación del templo, con las consecuentes afectaciones estructurales.

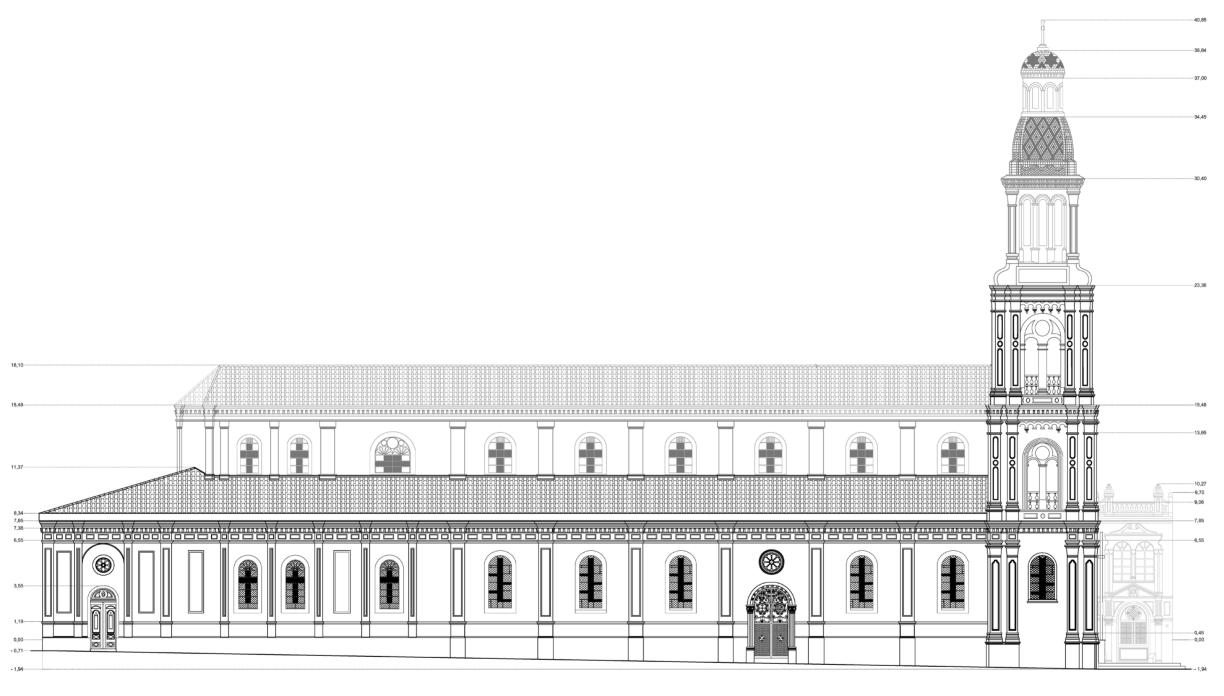


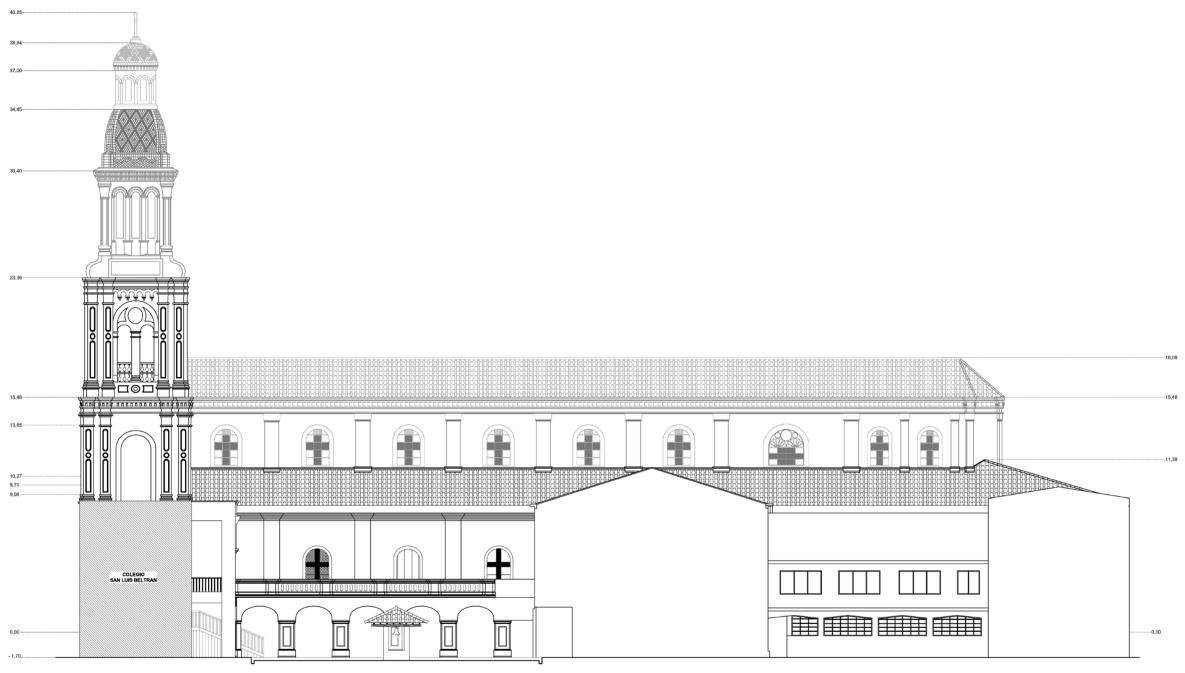

ANEXO 1 INFORMACIÓN PRELIMINAR



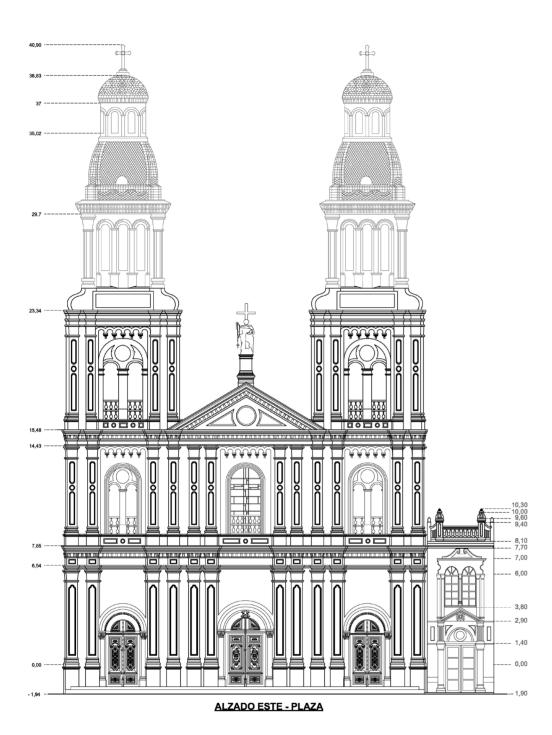






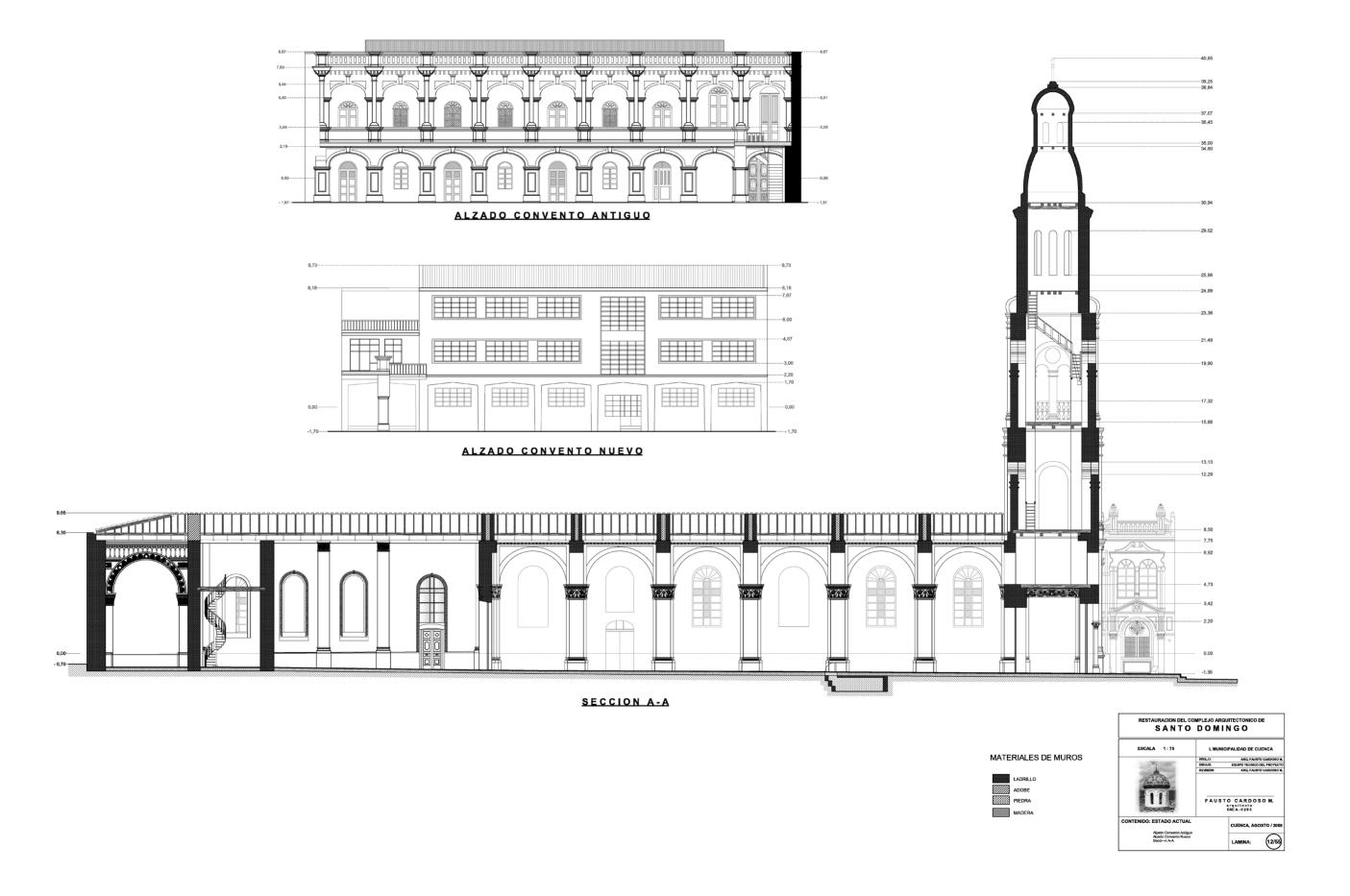

<u>ALZADOS</u>

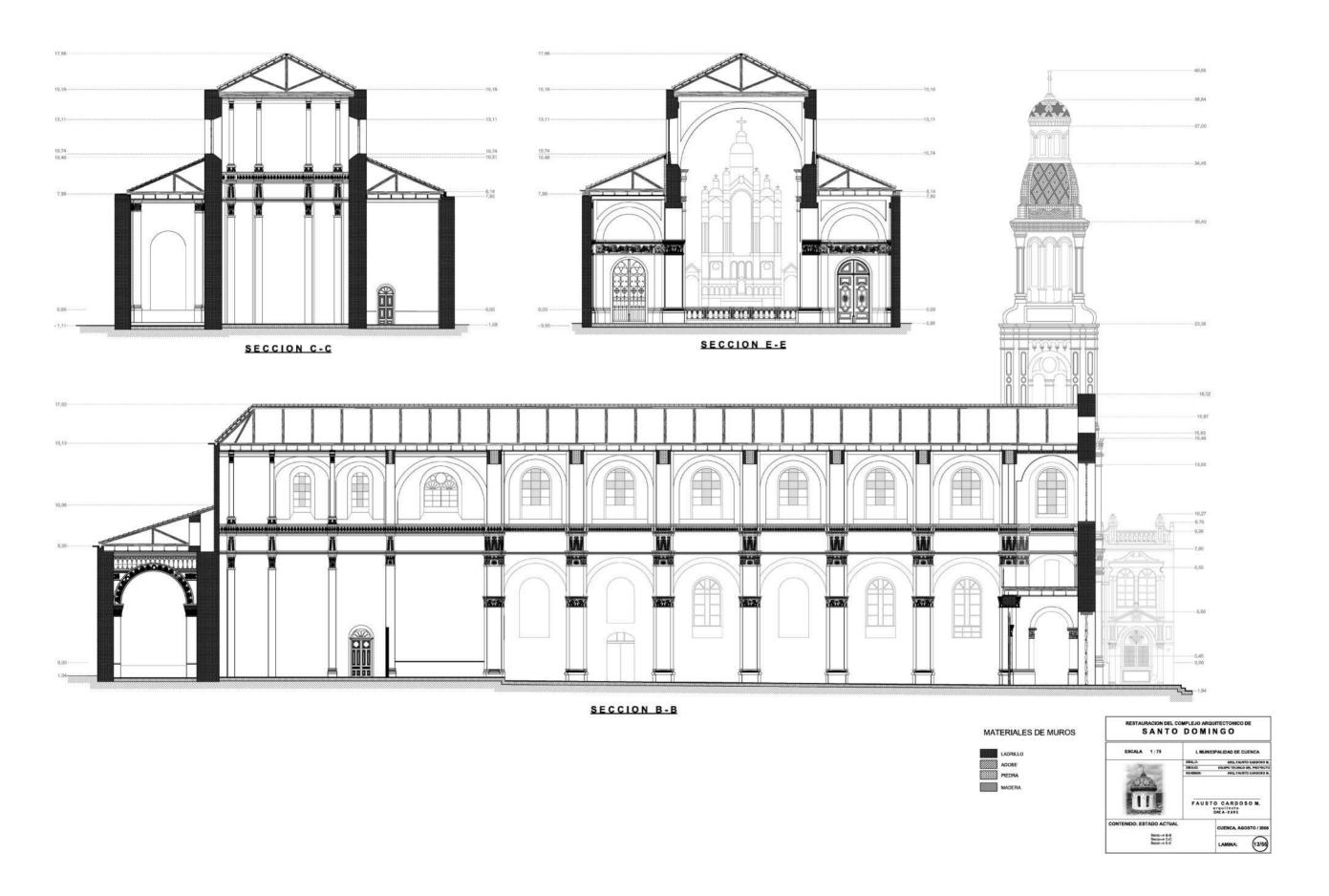
ALZADO NORTE - CALLE GRAN COLOMBIA



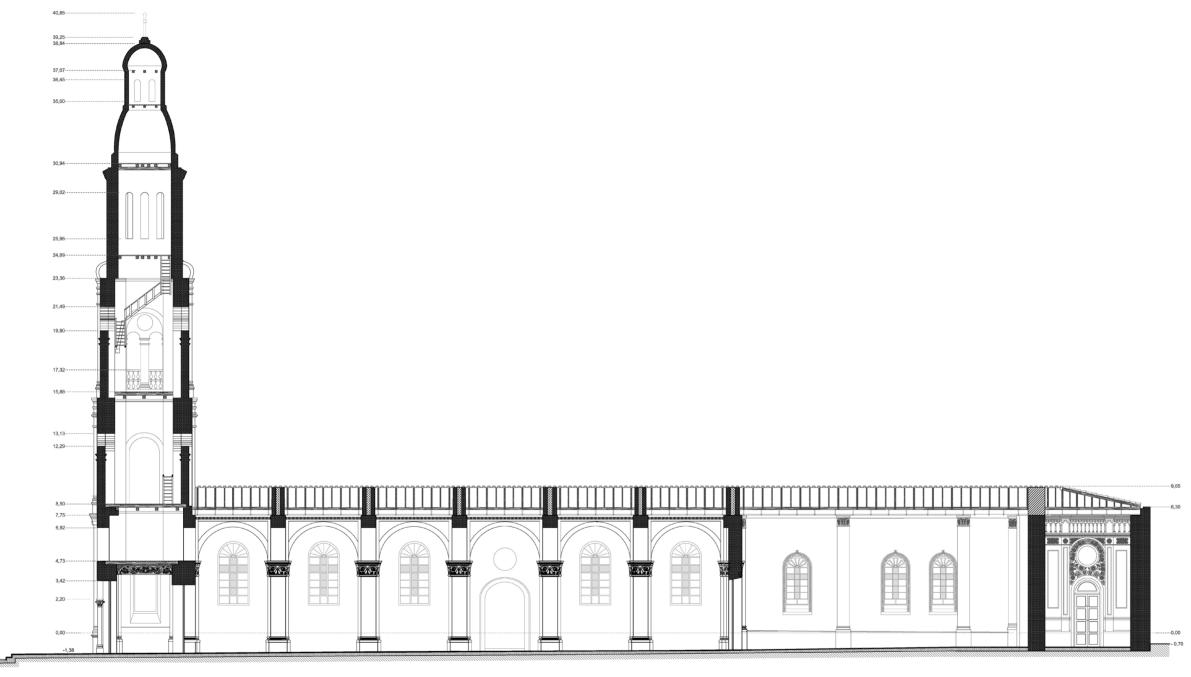
<u>ALZADOS</u>

ALZADO SUR - INTERIOR CONVENTO

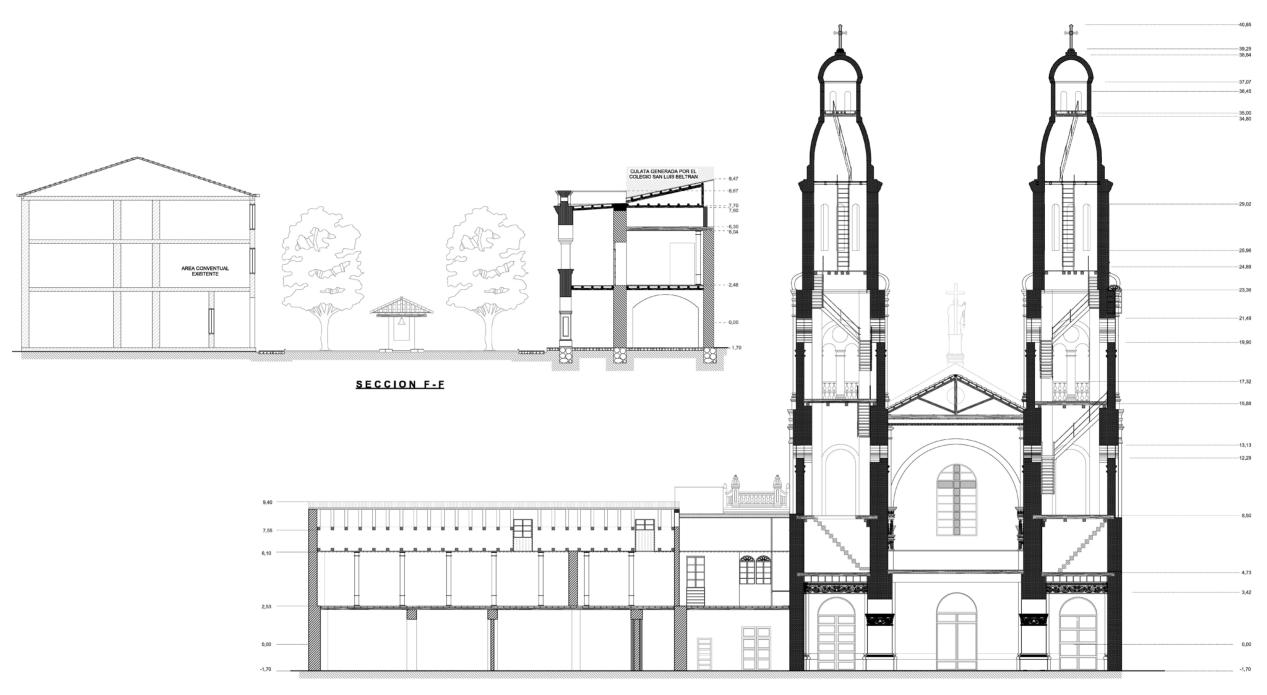




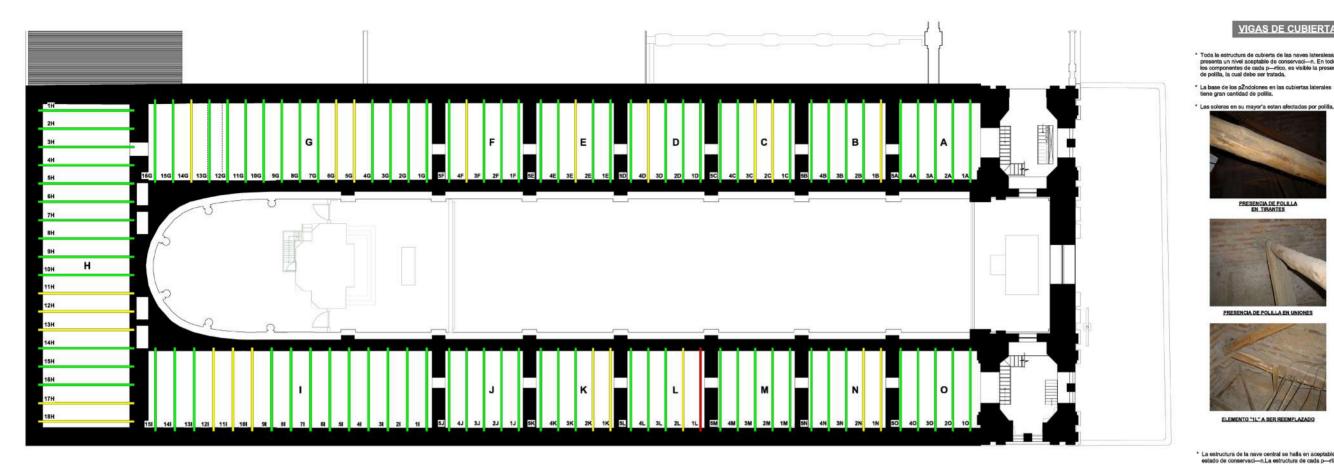
ALZADO OESTE - CALLE GENERAL TORRES



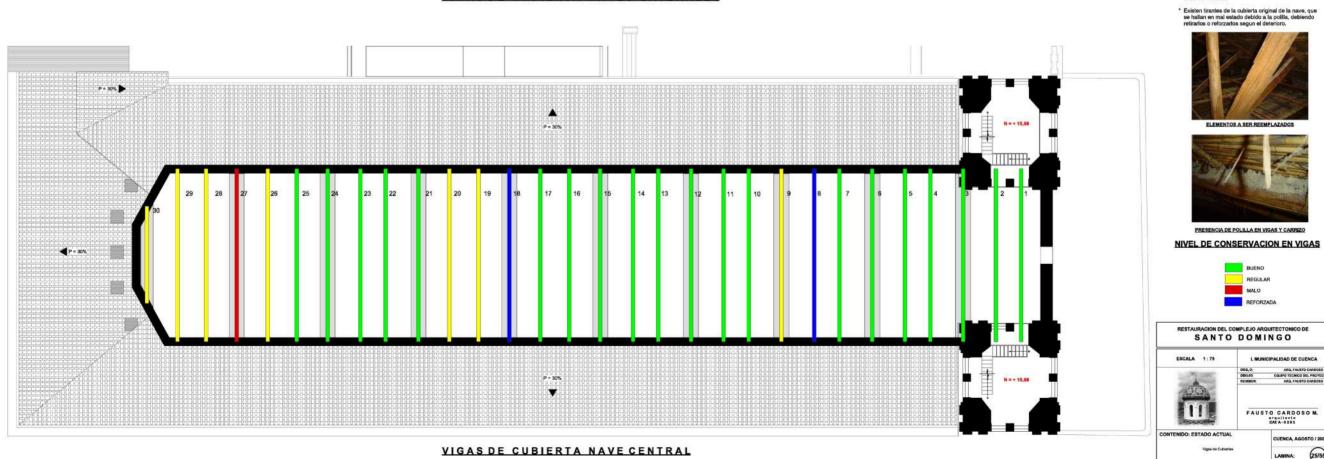
ALZADOS Y SECCIONES



SECCION D-D



<u>SECCIONES</u>



SECCION G-G

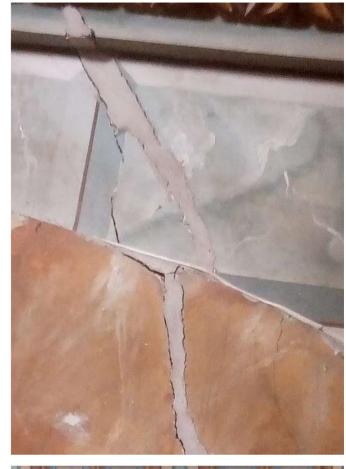
VIGAS DE CUBIERTA NAVES LATERALES

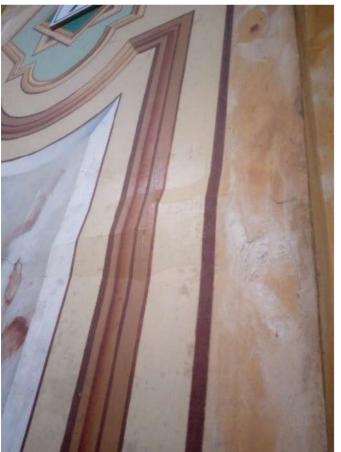
VIGAS DE CUBIERTAS

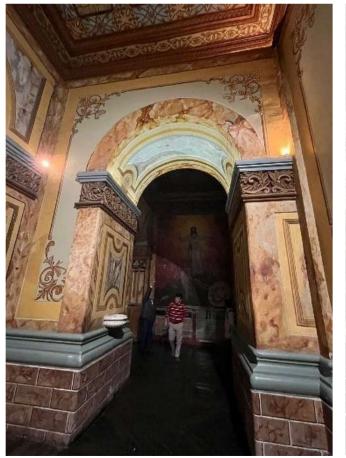
PRESENCIA DE POLILLA EN TIRANTES

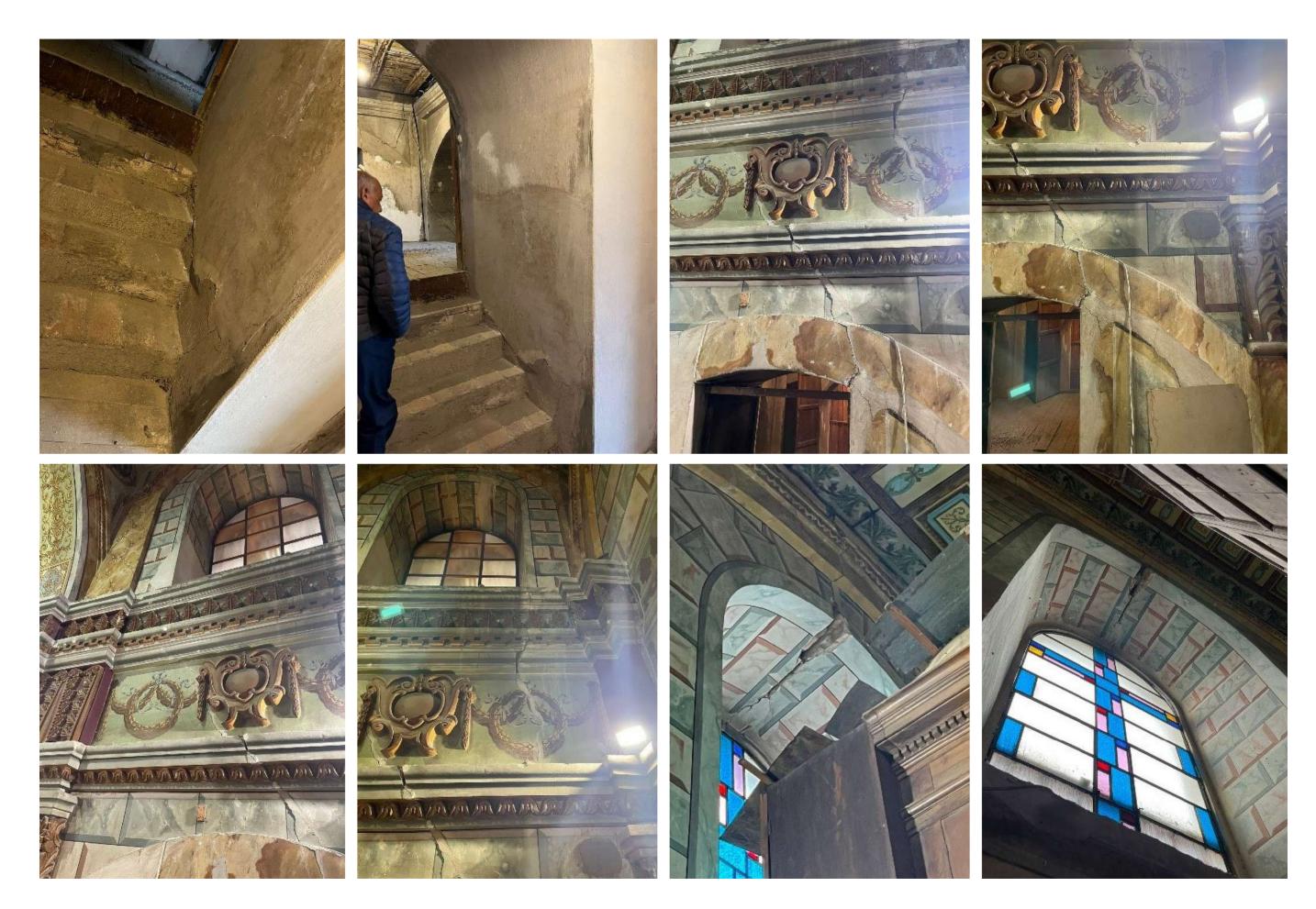
ELEMENTO "1L" A SER REEMPLAZADO

ANEXO2 INSPECCIÓN VISUAL

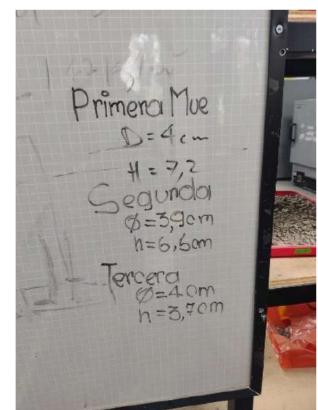


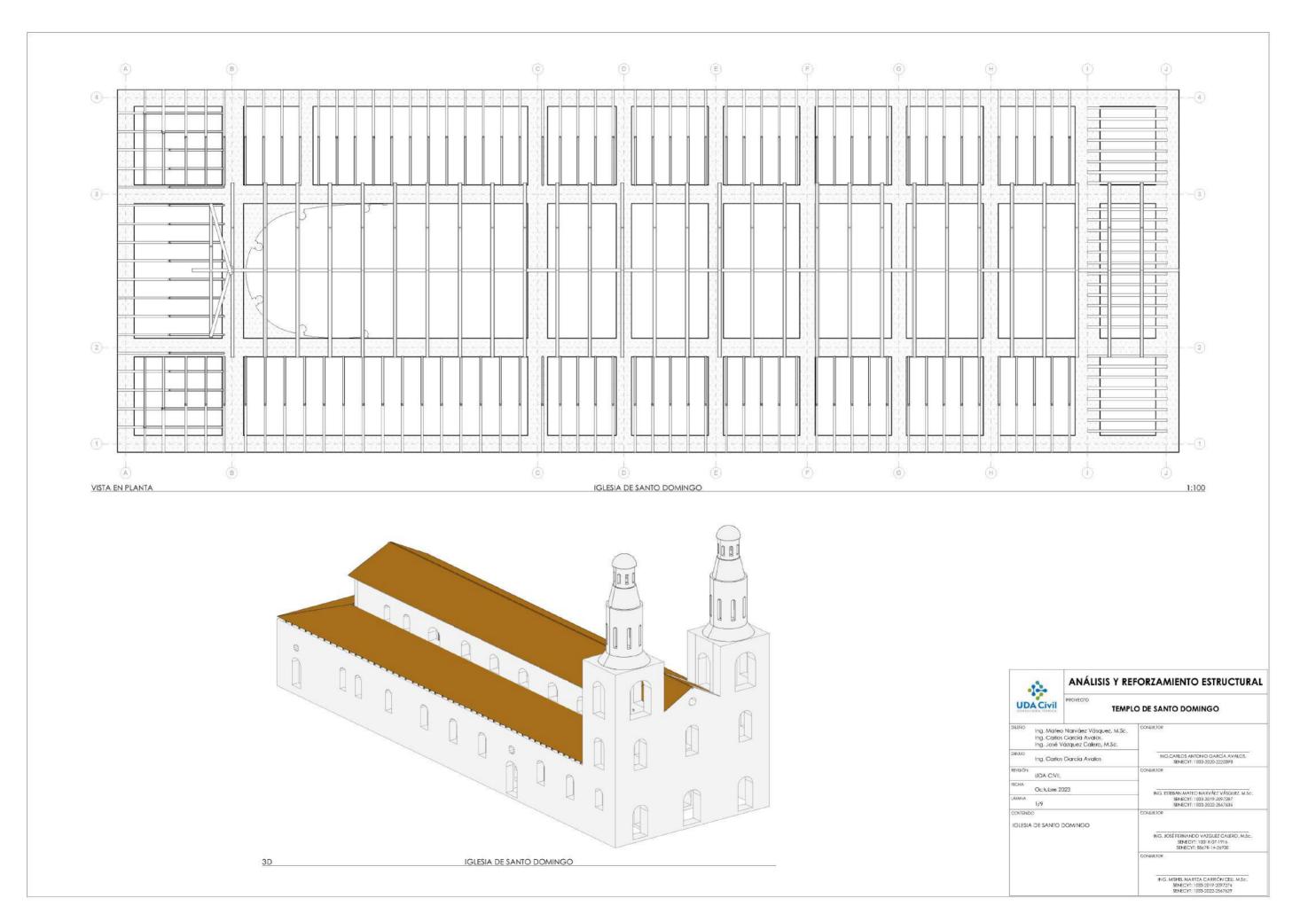


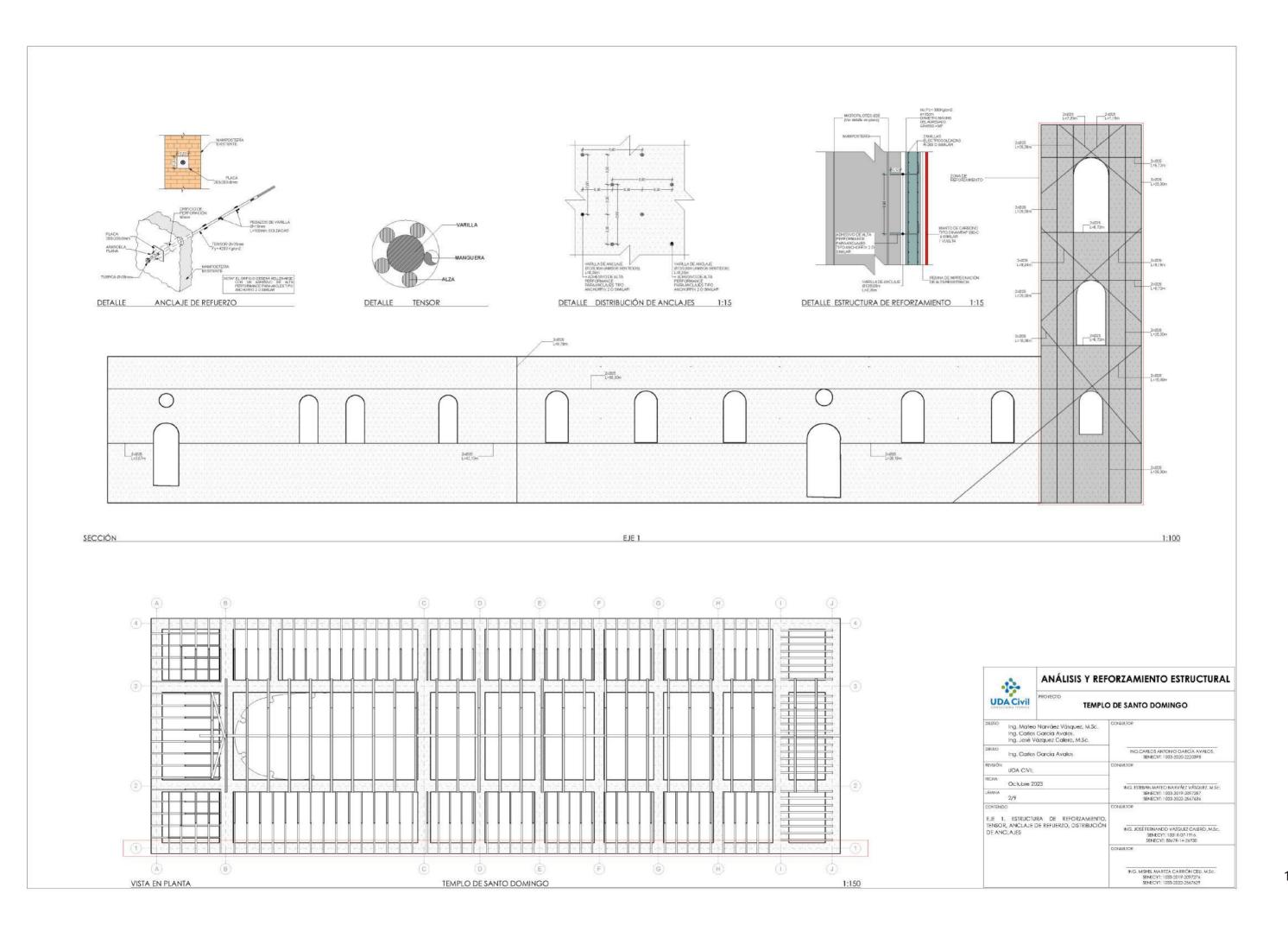


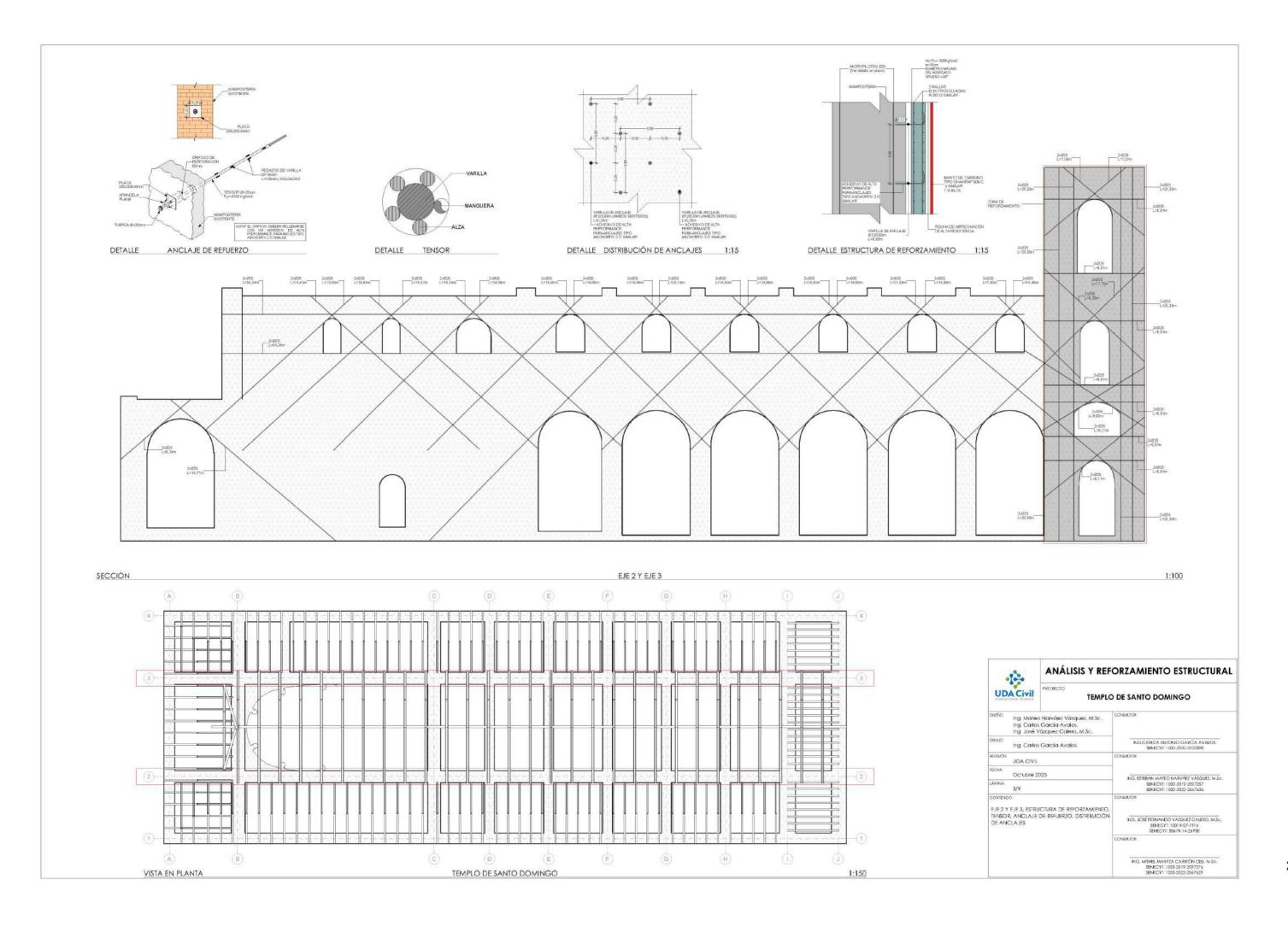


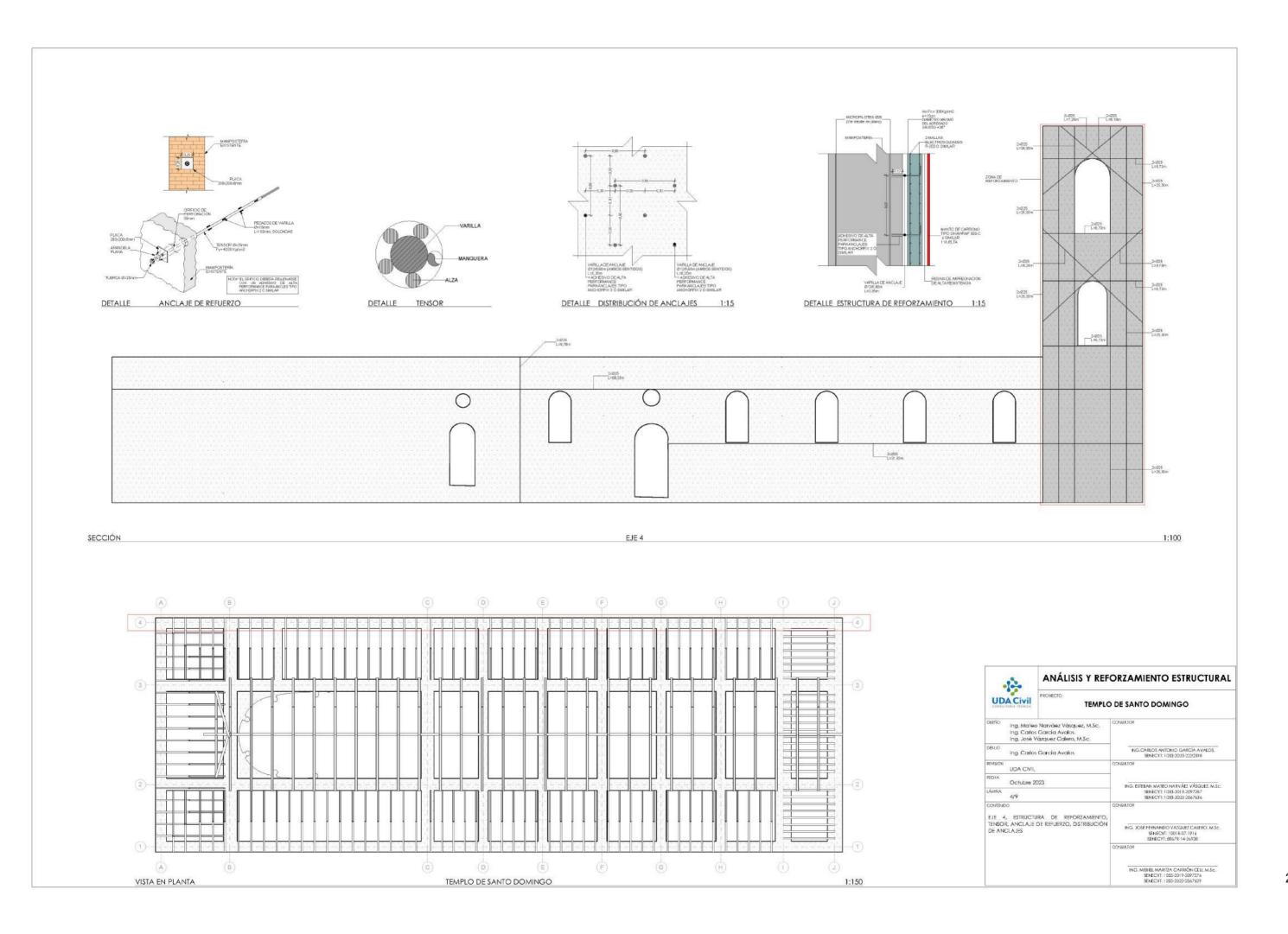
ANEXO3 ENSAYOS DE LABORATORIO

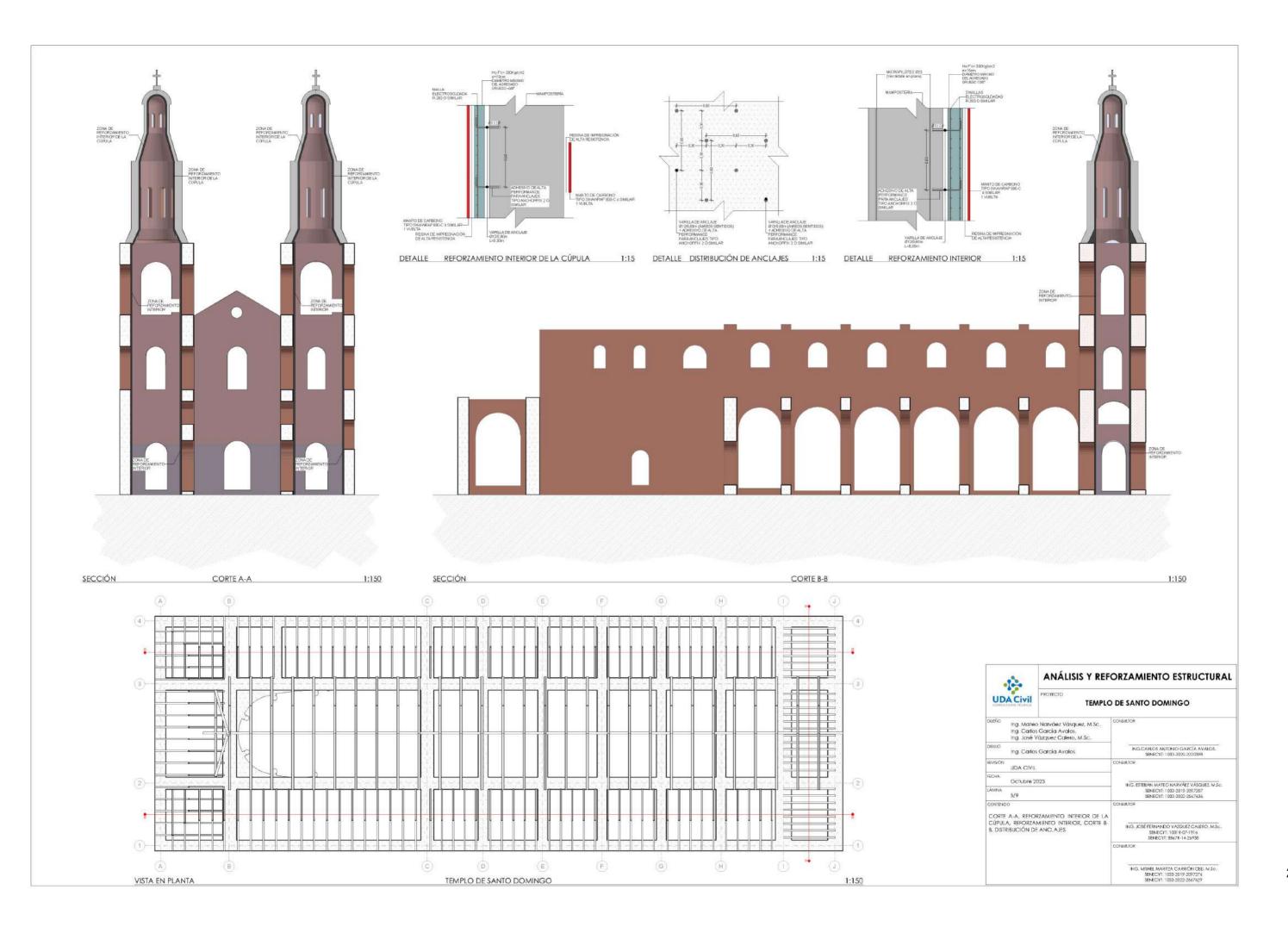









ANEXO4


PLANOS

